ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft Unicode version

Theorem seq3shft 10610
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
Hypotheses
Ref Expression
seq3shft.ex  |-  ( ph  ->  F  e.  V )
seq3shft.m  |-  ( ph  ->  M  e.  ZZ )
seq3shft.n  |-  ( ph  ->  N  e.  ZZ )
seq3shft.fn  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) )  ->  ( F `  x )  e.  S
)
seq3shft.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3shft  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Distinct variable groups:    x, F, y   
x, M, y    x, N, y    x,  .+ , y    x, S, y    ph, x, y
Allowed substitution hints:    V( x, y)

Proof of Theorem seq3shft
Dummy variables  a  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seq3shft.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 seq3shft.ex . . . . . . 7  |-  ( ph  ->  F  e.  V )
43adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  F  e.  V )
5 seq3shft.n . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
65zcnd 9174 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
76adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
8 eluzelz 9335 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
98adantl 275 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  ZZ )
109zcnd 9174 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  CC )
11 shftvalg 10608 . . . . . 6  |-  ( ( F  e.  V  /\  N  e.  CC  /\  x  e.  CC )  ->  (
( F  shift  N ) `
 x )  =  ( F `  (
x  -  N ) ) )
124, 7, 10, 11syl3anc 1216 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  =  ( F `  ( x  -  N ) ) )
13 fveq2 5421 . . . . . . 7  |-  ( a  =  ( x  -  N )  ->  ( F `  a )  =  ( F `  ( x  -  N
) ) )
1413eleq1d 2208 . . . . . 6  |-  ( a  =  ( x  -  N )  ->  (
( F `  a
)  e.  S  <->  ( F `  ( x  -  N
) )  e.  S
) )
15 seq3shft.fn . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) )  ->  ( F `  x )  e.  S
)
1615ralrimiva 2505 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  x )  e.  S )
17 fveq2 5421 . . . . . . . . . 10  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
1817eleq1d 2208 . . . . . . . . 9  |-  ( x  =  a  ->  (
( F `  x
)  e.  S  <->  ( F `  a )  e.  S
) )
1918cbvralv 2654 . . . . . . . 8  |-  ( A. x  e.  ( ZZ>= `  ( M  -  N
) ) ( F `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
2016, 19sylib 121 . . . . . . 7  |-  ( ph  ->  A. a  e.  (
ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
2120adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  A. a  e.  ( ZZ>= `  ( M  -  N ) ) ( F `  a )  e.  S )
222, 5zsubcld 9178 . . . . . . . 8  |-  ( ph  ->  ( M  -  N
)  e.  ZZ )
2322adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( M  -  N )  e.  ZZ )
245adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
259, 24zsubcld 9178 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  -  N )  e.  ZZ )
262zred 9173 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2726adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  e.  RR )
289zred 9173 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  x  e.  RR )
2924zred 9173 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  N  e.  RR )
30 eluzle 9338 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  M  <_  x )
3130adantl 275 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  M  <_  x )
3227, 28, 29, 31lesub1dd 8323 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( M  -  N )  <_  (
x  -  N ) )
33 eluz2 9332 . . . . . . 7  |-  ( ( x  -  N )  e.  ( ZZ>= `  ( M  -  N )
)  <->  ( ( M  -  N )  e.  ZZ  /\  ( x  -  N )  e.  ZZ  /\  ( M  -  N )  <_ 
( x  -  N
) ) )
3423, 25, 32, 33syl3anbrc 1165 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) )
3514, 21, 34rspcdva 2794 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  ( x  -  N
) )  e.  S
)
3612, 35eqeltrd 2216 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  e.  S
)
37 seq3shft.pl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
381, 2, 36, 37seqf 10234 . . 3  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) ) : (
ZZ>= `  M ) --> S )
3938ffnd 5273 . 2  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  Fn  ( ZZ>=
`  M ) )
40 eqid 2139 . . . . . 6  |-  ( ZZ>= `  ( M  -  N
) )  =  (
ZZ>= `  ( M  -  N ) )
4140, 22, 15, 37seqf 10234 . . . . 5  |-  ( ph  ->  seq ( M  -  N ) (  .+  ,  F ) : (
ZZ>= `  ( M  -  N ) ) --> S )
4241ffnd 5273 . . . 4  |-  ( ph  ->  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) ) )
43 seqex 10220 . . . . 5  |-  seq ( M  -  N )
(  .+  ,  F
)  e.  _V
4443shftfn 10596 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) )  /\  N  e.  CC )  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
4542, 6, 44syl2anc 408 . . 3  |-  ( ph  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
46 shftuz 10589 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( M  -  N
)  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  N )  e.  ( ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
475, 22, 46syl2anc 408 . . . . 5  |-  ( ph  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
482zcnd 9174 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
4948, 6npcand 8077 . . . . . 6  |-  ( ph  ->  ( ( M  -  N )  +  N
)  =  M )
5049fveq2d 5425 . . . . 5  |-  ( ph  ->  ( ZZ>= `  ( ( M  -  N )  +  N ) )  =  ( ZZ>= `  M )
)
5147, 50eqtrd 2172 . . . 4  |-  ( ph  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  M
) )
5251fneq2d 5214 . . 3  |-  ( ph  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N )  Fn 
{ x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  <-> 
(  seq ( M  -  N ) (  .+  ,  F )  shift  N )  Fn  ( ZZ>= `  M
) ) )
5345, 52mpbid 146 . 2  |-  ( ph  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  ( ZZ>=
`  M ) )
5448, 6negsubd 8079 . . . . . 6  |-  ( ph  ->  ( M  +  -u N )  =  ( M  -  N ) )
5554adantr 274 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( M  +  -u N )  =  ( M  -  N
) )
5655seqeq1d 10224 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  seq ( M  +  -u N ) (  .+  ,  F
)  =  seq ( M  -  N )
(  .+  ,  F
) )
57 eluzelcn 9337 . . . . . 6  |-  ( z  e.  ( ZZ>= `  M
)  ->  z  e.  CC )
5857adantl 275 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  CC )
596adantr 274 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  N  e.  CC )
6058, 59negsubd 8079 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( z  +  -u N )  =  ( z  -  N
) )
6156, 60fveq12d 5428 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq ( M  +  -u N
) (  .+  ,  F ) `  (
z  +  -u N
) )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
62 simpr 109 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  z  e.  ( ZZ>= `  M )
)
635adantr 274 . . . . 5  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  N  e.  ZZ )
6463znegcld 9175 . . . 4  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  -u N  e.  ZZ )
653ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  F  e.  V )
6659adantr 274 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  N  e.  CC )
67 elfzelz 9806 . . . . . . . 8  |-  ( y  e.  ( M ... z )  ->  y  e.  ZZ )
6867adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  y  e.  ZZ )
6968zcnd 9174 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  y  e.  CC )
70 shftvalg 10608 . . . . . 6  |-  ( ( F  e.  V  /\  N  e.  CC  /\  y  e.  CC )  ->  (
( F  shift  N ) `
 y )  =  ( F `  (
y  -  N ) ) )
7165, 66, 69, 70syl3anc 1216 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  -  N ) ) )
7269, 66negsubd 8079 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( y  +  -u N )  =  ( y  -  N
) )
7372fveq2d 5425 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( F `  ( y  +  -u N ) )  =  ( F `  (
y  -  N ) ) )
7471, 73eqtr4d 2175 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  +  -u N ) ) )
7536adantlr 468 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( F  shift  N ) `  x )  e.  S
)
76 simpll 518 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ph )
77 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )
7854fveq2d 5425 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( M  +  -u N ) )  =  ( ZZ>= `  ( M  -  N )
) )
7978eleq2d 2209 . . . . . . 7  |-  ( ph  ->  ( x  e.  (
ZZ>= `  ( M  +  -u N ) )  <->  x  e.  ( ZZ>= `  ( M  -  N ) ) ) )
8079ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ( x  e.  ( ZZ>= `  ( M  +  -u N ) )  <-> 
x  e.  ( ZZ>= `  ( M  -  N
) ) ) )
8177, 80mpbid 146 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  x  e.  ( ZZ>= `  ( M  -  N ) ) )
8276, 81, 15syl2anc 408 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  ( M  +  -u N ) ) )  ->  ( F `  x )  e.  S
)
8337adantlr 468 . . . 4  |-  ( ( ( ph  /\  z  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
8462, 64, 74, 75, 82, 83seq3shft2 10246 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  , 
( F  shift  N ) ) `  z )  =  (  seq ( M  +  -u N ) (  .+  ,  F
) `  ( z  +  -u N ) ) )
85 shftvalg 10608 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  e.  _V  /\  N  e.  CC  /\  z  e.  CC )  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N ) `  z )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
8643, 59, 58, 85mp3an2i 1320 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z )  =  (  seq ( M  -  N ) ( 
.+  ,  F ) `
 ( z  -  N ) ) )
8761, 84, 863eqtr4d 2182 . 2  |-  ( (
ph  /\  z  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  , 
( F  shift  N ) ) `  z )  =  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z ) )
8839, 53, 87eqfnfvd 5521 1  |-  ( ph  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   {crab 2420   _Vcvv 2686   class class class wbr 3929    Fn wfn 5118   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619    + caddc 7623    <_ cle 7801    - cmin 7933   -ucneg 7934   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218    shift cshi 10586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-seqfrec 10219  df-shft 10587
This theorem is referenced by:  iser3shft  11115  eftlub  11396
  Copyright terms: Public domain W3C validator