ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdass Unicode version

Theorem gcdass 11703
Description: Associative law for  gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdass  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  ( N  gcd  ( M  gcd  P ) ) )

Proof of Theorem gcdass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 anass 398 . . 3  |-  ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 )  <->  ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) )
2 anass 398 . . . . . 6  |-  ( ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P
)  <->  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) )
32a1i 9 . . . . 5  |-  ( x  e.  ZZ  ->  (
( ( x  ||  N  /\  x  ||  M
)  /\  x  ||  P
)  <->  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) ) )
43rabbiia 2671 . . . 4  |-  { x  e.  ZZ  |  ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P ) }  =  { x  e.  ZZ  |  ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) ) }
54supeq1i 6875 . . 3  |-  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  )  =  sup ( { x  e.  ZZ  |  ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) ) } ,  RR ,  <  )
61, 5ifbieq2i 3495 . 2  |-  if ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  ) )  =  if ( ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ,  0 ,  sup ( { x  e.  ZZ  | 
( x  ||  N  /\  ( x  ||  M  /\  x  ||  P ) ) } ,  RR ,  <  ) )
7 gcdcl 11655 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  e.  NN0 )
873adant3 1001 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  M )  e. 
NN0 )
98nn0zd 9171 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  M )  e.  ZZ )
10 simp3 983 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  P  e.  ZZ )
11 gcdval 11648 . . . 4  |-  ( ( ( N  gcd  M
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( N  gcd  M )  gcd  P )  =  if ( ( ( N  gcd  M
)  =  0  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  ( N  gcd  M )  /\  x  ||  P
) } ,  RR ,  <  ) ) )
129, 10, 11syl2anc 408 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  if ( ( ( N  gcd  M )  =  0  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  ( N  gcd  M )  /\  x  ||  P
) } ,  RR ,  <  ) ) )
13 gcdeq0 11665 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  gcd  M )  =  0  <->  ( N  =  0  /\  M  =  0 ) ) )
14133adant3 1001 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  =  0  <->  ( N  =  0  /\  M  =  0 ) ) )
1514anbi1d 460 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N  gcd  M )  =  0  /\  P  =  0 )  <-> 
( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ) )
1615bicomd 140 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N  =  0  /\  M  =  0 )  /\  P  =  0 )  <->  ( ( N  gcd  M )  =  0  /\  P  =  0 ) ) )
17 simpr 109 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
18 simpl1 984 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  N  e.  ZZ )
19 simpl2 985 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  M  e.  ZZ )
20 dvdsgcdb 11701 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( x  ||  N  /\  x  ||  M )  <-> 
x  ||  ( N  gcd  M ) ) )
2117, 18, 19, 20syl3anc 1216 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x 
||  N  /\  x  ||  M )  <->  x  ||  ( N  gcd  M ) ) )
2221anbi1d 460 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P )  <->  ( x  ||  ( N  gcd  M
)  /\  x  ||  P
) ) )
2322rabbidva 2674 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  ZZ  |  ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P ) }  =  { x  e.  ZZ  |  ( x 
||  ( N  gcd  M )  /\  x  ||  P ) } )
2423supeq1d 6874 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  )  =  sup ( { x  e.  ZZ  |  ( x 
||  ( N  gcd  M )  /\  x  ||  P ) } ,  RR ,  <  ) )
2516, 24ifbieq2d 3496 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  ) )  =  if ( ( ( N  gcd  M
)  =  0  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  ( N  gcd  M )  /\  x  ||  P
) } ,  RR ,  <  ) ) )
2612, 25eqtr4d 2175 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  if ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  ) ) )
27 simp1 981 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  N  e.  ZZ )
28 gcdcl 11655 . . . . . 6  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M  gcd  P
)  e.  NN0 )
29283adant1 999 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M  gcd  P )  e. 
NN0 )
3029nn0zd 9171 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M  gcd  P )  e.  ZZ )
31 gcdval 11648 . . . 4  |-  ( ( N  e.  ZZ  /\  ( M  gcd  P )  e.  ZZ )  -> 
( N  gcd  ( M  gcd  P ) )  =  if ( ( N  =  0  /\  ( M  gcd  P
)  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  x  ||  ( M  gcd  P ) ) } ,  RR ,  <  ) ) )
3227, 30, 31syl2anc 408 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  ( M  gcd  P ) )  =  if ( ( N  =  0  /\  ( M  gcd  P )  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  | 
( x  ||  N  /\  x  ||  ( M  gcd  P ) ) } ,  RR ,  <  ) ) )
33 gcdeq0 11665 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( M  gcd  P )  =  0  <->  ( M  =  0  /\  P  =  0 ) ) )
34333adant1 999 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( M  gcd  P
)  =  0  <->  ( M  =  0  /\  P  =  0 ) ) )
3534anbi2d 459 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  /\  ( M  gcd  P )  =  0 )  <-> 
( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ) )
3635bicomd 140 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  /\  ( M  =  0  /\  P  =  0 ) )  <->  ( N  =  0  /\  ( M  gcd  P )  =  0 ) ) )
37 simpl3 986 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  P  e.  ZZ )
38 dvdsgcdb 11701 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( x  ||  M  /\  x  ||  P )  <-> 
x  ||  ( M  gcd  P ) ) )
3917, 19, 37, 38syl3anc 1216 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x 
||  M  /\  x  ||  P )  <->  x  ||  ( M  gcd  P ) ) )
4039anbi2d 459 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) )  <-> 
( x  ||  N  /\  x  ||  ( M  gcd  P ) ) ) )
4140rabbidva 2674 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  ZZ  |  ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) ) }  =  { x  e.  ZZ  |  ( x 
||  N  /\  x  ||  ( M  gcd  P
) ) } )
4241supeq1d 6874 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) } ,  RR ,  <  )  =  sup ( { x  e.  ZZ  |  ( x 
||  N  /\  x  ||  ( M  gcd  P
) ) } ,  RR ,  <  ) )
4336, 42ifbieq2d 3496 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) } ,  RR ,  <  ) )  =  if ( ( N  =  0  /\  ( M  gcd  P
)  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  x  ||  ( M  gcd  P ) ) } ,  RR ,  <  ) ) )
4432, 43eqtr4d 2175 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  ( M  gcd  P ) )  =  if ( ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) } ,  RR ,  <  ) ) )
456, 26, 443eqtr4a 2198 1  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  ( N  gcd  ( M  gcd  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   {crab 2420   ifcif 3474   class class class wbr 3929  (class class class)co 5774   supcsup 6869   RRcr 7619   0cc0 7620    < clt 7800   NN0cn0 8977   ZZcz 9054    || cdvds 11493    gcd cgcd 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-gcd 11636
This theorem is referenced by:  rpmulgcd  11714
  Copyright terms: Public domain W3C validator