ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icc0r Unicode version

Theorem icc0r 9709
Description: An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
Assertion
Ref Expression
icc0r  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )

Proof of Theorem icc0r
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xrletr 9591 . . . . . . 7  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <_  x  /\  x  <_  B )  ->  A  <_  B
) )
213com23 1187 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <_  x  /\  x  <_  B )  ->  A  <_  B
) )
323expa 1181 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  <_  x  /\  x  <_  B
)  ->  A  <_  B ) )
43rexlimdva 2549 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <_  B )  ->  A  <_  B ) )
5 xrlenlt 7829 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
64, 5sylibd 148 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <_  x  /\  x  <_  B )  ->  -.  B  <  A ) )
76con2d 613 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B ) ) )
8 iccval 9703 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,] B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) } )
98eqeq1d 2148 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/) ) )
10 rabeq0 3392 . . . 4  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <_  x  /\  x  <_  B ) )
11 ralnex 2426 . . . 4  |-  ( A. x  e.  RR*  -.  ( A  <_  x  /\  x  <_  B )  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) )
1210, 11bitri 183 . . 3  |-  ( { x  e.  RR*  |  ( A  <_  x  /\  x  <_  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) )
139, 12syl6bb 195 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  -.  E. x  e.  RR*  ( A  <_  x  /\  x  <_  B
) ) )
147, 13sylibrd 168 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420   (/)c0 3363   class class class wbr 3929  (class class class)co 5774   RR*cxr 7799    < clt 7800    <_ cle 7801   [,]cicc 9674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-icc 9678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator