ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq0 Unicode version

Theorem rabeq0 3275
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
rabeq0  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )

Proof of Theorem rabeq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 imnan 634 . . 3  |-  ( ( x  e.  A  ->  -.  ph )  <->  -.  (
x  e.  A  /\  ph ) )
21albii 1375 . 2  |-  ( A. x ( x  e.  A  ->  -.  ph )  <->  A. x  -.  ( x  e.  A  /\  ph ) )
3 df-ral 2328 . 2  |-  ( A. x  e.  A  -.  ph  <->  A. x ( x  e.  A  ->  -.  ph )
)
4 sbn 1842 . . . 4  |-  ( [ y  /  x ]  -.  ( x  e.  A  /\  ph )  <->  -.  [ y  /  x ] ( x  e.  A  /\  ph ) )
54albii 1375 . . 3  |-  ( A. y [ y  /  x ]  -.  ( x  e.  A  /\  ph )  <->  A. y  -.  [ y  /  x ] ( x  e.  A  /\  ph ) )
6 nfv 1437 . . . 4  |-  F/ y  -.  ( x  e.  A  /\  ph )
76sb8 1752 . . 3  |-  ( A. x  -.  ( x  e.  A  /\  ph )  <->  A. y [ y  /  x ]  -.  (
x  e.  A  /\  ph ) )
8 eq0 3267 . . . 4  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. y  -.  y  e.  { x  e.  A  |  ph }
)
9 df-rab 2332 . . . . . . . 8  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
109eleq2i 2120 . . . . . . 7  |-  ( y  e.  { x  e.  A  |  ph }  <->  y  e.  { x  |  ( x  e.  A  /\  ph ) } )
11 df-clab 2043 . . . . . . 7  |-  ( y  e.  { x  |  ( x  e.  A  /\  ph ) }  <->  [ y  /  x ] ( x  e.  A  /\  ph ) )
1210, 11bitri 177 . . . . . 6  |-  ( y  e.  { x  e.  A  |  ph }  <->  [ y  /  x ]
( x  e.  A  /\  ph ) )
1312notbii 604 . . . . 5  |-  ( -.  y  e.  { x  e.  A  |  ph }  <->  -. 
[ y  /  x ] ( x  e.  A  /\  ph )
)
1413albii 1375 . . . 4  |-  ( A. y  -.  y  e.  {
x  e.  A  |  ph }  <->  A. y  -.  [
y  /  x ]
( x  e.  A  /\  ph ) )
158, 14bitri 177 . . 3  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. y  -.  [ y  /  x ] ( x  e.  A  /\  ph )
)
165, 7, 153bitr4ri 206 . 2  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  -.  ( x  e.  A  /\  ph ) )
172, 3, 163bitr4ri 206 1  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101    <-> wb 102   A.wal 1257    = wceq 1259    e. wcel 1409   [wsb 1661   {cab 2042   A.wral 2323   {crab 2327   (/)c0 3252
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rab 2332  df-v 2576  df-dif 2948  df-nul 3253
This theorem is referenced by:  rabnc  3278  rabrsndc  3466  ssfiexmid  6367  diffitest  6375  iooidg  8879  icc0r  8896  fznlem  9007  ioo0  9216  ico0  9218  ioc0  9219
  Copyright terms: Public domain W3C validator