ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccneg Unicode version

Theorem iccneg 9076
Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iccneg  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  -u C  e.  ( -u B [,] -u A ) ) )

Proof of Theorem iccneg
StepHypRef Expression
1 renegcl 7425 . . . . 5  |-  ( C  e.  RR  ->  -u C  e.  RR )
2 ax-1 5 . . . . 5  |-  ( C  e.  RR  ->  ( -u C  e.  RR  ->  C  e.  RR ) )
31, 2impbid2 141 . . . 4  |-  ( C  e.  RR  ->  ( C  e.  RR  <->  -u C  e.  RR ) )
433ad2ant3 962 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  RR  <->  -u C  e.  RR ) )
5 ancom 262 . . . 4  |-  ( ( C  <_  B  /\  A  <_  C )  <->  ( A  <_  C  /\  C  <_  B ) )
6 leneg 7625 . . . . . . 7  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
76ancoms 264 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
873adant1 957 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <_  B  <->  -u B  <_  -u C ) )
9 leneg 7625 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -u C  <_  -u A ) )
1093adant2 958 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -u C  <_  -u A ) )
118, 10anbi12d 457 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  <_  B  /\  A  <_  C )  <-> 
( -u B  <_  -u C  /\  -u C  <_  -u A
) ) )
125, 11syl5bbr 192 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  C  <_  B )  <-> 
( -u B  <_  -u C  /\  -u C  <_  -u A
) ) )
134, 12anbi12d 457 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) )  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) ) )
14 elicc2 9026 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
15143adant3 959 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
16 3anass 924 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  <->  ( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) ) )
1715, 16syl6bb 194 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR  /\  ( A  <_  C  /\  C  <_  B ) ) ) )
18 renegcl 7425 . . . . 5  |-  ( B  e.  RR  ->  -u B  e.  RR )
19 renegcl 7425 . . . . 5  |-  ( A  e.  RR  ->  -u A  e.  RR )
20 elicc2 9026 . . . . 5  |-  ( (
-u B  e.  RR  /\  -u A  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
2118, 19, 20syl2anr 284 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
22213adant3 959 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  -u B  <_ 
-u C  /\  -u C  <_ 
-u A ) ) )
23 3anass 924 . . 3  |-  ( (
-u C  e.  RR  /\  -u B  <_  -u C  /\  -u C  <_  -u A
)  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) )
2422, 23syl6bb 194 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  e.  ( -u B [,] -u A )  <->  ( -u C  e.  RR  /\  ( -u B  <_  -u C  /\  -u C  <_ 
-u A ) ) ) )
2513, 17, 243bitr4d 218 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  -u C  e.  ( -u B [,] -u A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    e. wcel 1434   class class class wbr 3787  (class class class)co 5537   RRcr 7031    <_ cle 7205   -ucneg 7336   [,]cicc 8979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-cnex 7118  ax-resscn 7119  ax-1cn 7120  ax-1re 7121  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-addcom 7127  ax-addass 7129  ax-distr 7131  ax-i2m1 7132  ax-0id 7135  ax-rnegex 7136  ax-cnre 7138  ax-pre-ltirr 7139  ax-pre-ltwlin 7140  ax-pre-lttrn 7141  ax-pre-ltadd 7143
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-id 4050  df-po 4053  df-iso 4054  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-iota 4891  df-fun 4928  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210  df-sub 7337  df-neg 7338  df-icc 8983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator