ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoini2 Unicode version

Theorem isoini2 5720
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
isoini2.1  |-  C  =  ( A  i^i  ( `' R " { X } ) )
isoini2.2  |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } ) )
Assertion
Ref Expression
isoini2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C )  Isom  R ,  S  ( C ,  D ) )

Proof of Theorem isoini2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5708 . . . . . 6  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
2 f1of1 5366 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -1-1-> B )
31, 2syl 14 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-> B )
43adantr 274 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  H : A -1-1-> B )
5 isoini2.1 . . . . 5  |-  C  =  ( A  i^i  ( `' R " { X } ) )
6 inss1 3296 . . . . 5  |-  ( A  i^i  ( `' R " { X } ) )  C_  A
75, 6eqsstri 3129 . . . 4  |-  C  C_  A
8 f1ores 5382 . . . 4  |-  ( ( H : A -1-1-> B  /\  C  C_  A )  ->  ( H  |`  C ) : C -1-1-onto-> ( H " C ) )
94, 7, 8sylancl 409 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) : C -1-1-onto-> ( H " C
) )
10 isoini 5719 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H " ( A  i^i  ( `' R " { X } ) ) )  =  ( B  i^i  ( `' S " { ( H `  X ) } ) ) )
115imaeq2i 4879 . . . . 5  |-  ( H
" C )  =  ( H " ( A  i^i  ( `' R " { X } ) ) )
12 isoini2.2 . . . . 5  |-  D  =  ( B  i^i  ( `' S " { ( H `  X ) } ) )
1310, 11, 123eqtr4g 2197 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H " C )  =  D )
14 f1oeq3 5358 . . . 4  |-  ( ( H " C )  =  D  ->  (
( H  |`  C ) : C -1-1-onto-> ( H " C
)  <->  ( H  |`  C ) : C -1-1-onto-> D
) )
1513, 14syl 14 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  (
( H  |`  C ) : C -1-1-onto-> ( H " C
)  <->  ( H  |`  C ) : C -1-1-onto-> D
) )
169, 15mpbid 146 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C ) : C -1-1-onto-> D )
17 df-isom 5132 . . . . . . 7  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
1817simprbi 273 . . . . . 6  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )
1918adantr 274 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
20 ssralv 3161 . . . . . 6  |-  ( C 
C_  A  ->  ( A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
2120ralimdv 2500 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. x  e.  A  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
227, 19, 21mpsyl 65 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  A  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
23 ssralv 3161 . . . 4  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
247, 22, 23mpsyl 65 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )
25 fvres 5445 . . . . . . 7  |-  ( x  e.  C  ->  (
( H  |`  C ) `
 x )  =  ( H `  x
) )
26 fvres 5445 . . . . . . 7  |-  ( y  e.  C  ->  (
( H  |`  C ) `
 y )  =  ( H `  y
) )
2725, 26breqan12d 3945 . . . . . 6  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( ( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y )  <->  ( H `  x ) S ( H `  y ) ) )
2827bibi2d 231 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( ( x R y  <->  ( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) )  <->  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
2928ralbidva 2433 . . . 4  |-  ( x  e.  C  ->  ( A. y  e.  C  ( x R y  <-> 
( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) )  <->  A. y  e.  C  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
3029ralbiia 2449 . . 3  |-  ( A. x  e.  C  A. y  e.  C  (
x R y  <->  ( ( H  |`  C ) `  x ) S ( ( H  |`  C ) `
 y ) )  <->  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )
3124, 30sylibr 133 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  A. x  e.  C  A. y  e.  C  ( x R y  <->  ( ( H  |`  C ) `  x ) S ( ( H  |`  C ) `
 y ) ) )
32 df-isom 5132 . 2  |-  ( ( H  |`  C )  Isom  R ,  S  ( C ,  D )  <-> 
( ( H  |`  C ) : C -1-1-onto-> D  /\  A. x  e.  C  A. y  e.  C  ( x R y  <-> 
( ( H  |`  C ) `  x
) S ( ( H  |`  C ) `  y ) ) ) )
3316, 31, 32sylanbrc 413 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  X  e.  A )  ->  ( H  |`  C )  Isom  R ,  S  ( C ,  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416    i^i cin 3070    C_ wss 3071   {csn 3527   class class class wbr 3929   `'ccnv 4538    |` cres 4541   "cima 4542   -1-1->wf1 5120   -1-1-onto->wf1o 5122   ` cfv 5123    Isom wiso 5124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator