ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lediv12a Unicode version

Theorem lediv12a 8109
Description: Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
Assertion
Ref Expression
lediv12a  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  <_  ( B  /  C ) )

Proof of Theorem lediv12a
StepHypRef Expression
1 simplrr 503 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  A  <_  B )
2 simprrr 507 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  C  <_  D )
3 simprll 504 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  C  e.  RR )
4 simprrl 506 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  <  C )
5 simprlr 505 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  D  e.  RR )
6 0red 7252 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  e.  RR )
76, 3, 5, 4, 2ltletrd 7664 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  <  D )
8 lerec 8099 . . . . 5  |-  ( ( ( C  e.  RR  /\  0  <  C )  /\  ( D  e.  RR  /\  0  < 
D ) )  -> 
( C  <_  D  <->  ( 1  /  D )  <_  ( 1  /  C ) ) )
93, 4, 5, 7, 8syl22anc 1171 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( C  <_  D  <->  ( 1  /  D )  <_  (
1  /  C ) ) )
102, 9mpbid 145 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( 1  /  D )  <_ 
( 1  /  C
) )
11 simplll 500 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  A  e.  RR )
12 simplrl 502 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  <_  A )
1311, 12jca 300 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  e.  RR  /\  0  <_  A ) )
14 simpllr 501 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  B  e.  RR )
155, 7gt0ap0d 7865 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  D #  0
)
165, 15rerecclapd 8056 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( 1  /  D )  e.  RR )
17 recgt0 8065 . . . . . . 7  |-  ( ( D  e.  RR  /\  0  <  D )  -> 
0  <  ( 1  /  D ) )
185, 7, 17syl2anc 403 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  <  ( 1  /  D ) )
196, 16, 18ltled 7365 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  <_  ( 1  /  D ) )
2016, 19jca 300 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( (
1  /  D )  e.  RR  /\  0  <_  ( 1  /  D
) ) )
213, 4gt0ap0d 7865 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  C #  0
)
223, 21rerecclapd 8056 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( 1  /  C )  e.  RR )
23 lemul12a 8077 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( ( 1  /  D )  e.  RR  /\  0  <_  ( 1  /  D ) )  /\  ( 1  /  C )  e.  RR ) )  ->  (
( A  <_  B  /\  ( 1  /  D
)  <_  ( 1  /  C ) )  ->  ( A  x.  ( 1  /  D
) )  <_  ( B  x.  ( 1  /  C ) ) ) )
2413, 14, 20, 22, 23syl22anc 1171 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( ( A  <_  B  /\  (
1  /  D )  <_  ( 1  /  C ) )  -> 
( A  x.  (
1  /  D ) )  <_  ( B  x.  ( 1  /  C
) ) ) )
251, 10, 24mp2and 424 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  x.  ( 1  /  D
) )  <_  ( B  x.  ( 1  /  C ) ) )
2611recnd 7279 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  A  e.  CC )
275recnd 7279 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  D  e.  CC )
2826, 27, 15divrecapd 8017 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  =  ( A  x.  ( 1  /  D ) ) )
2914recnd 7279 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  B  e.  CC )
303recnd 7279 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  C  e.  CC )
3129, 30, 21divrecapd 8017 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( B  /  C )  =  ( B  x.  ( 1  /  C ) ) )
3225, 28, 313brtr4d 3835 1  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  <_  ( B  /  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   class class class wbr 3805  (class class class)co 5564   RRcr 7112   0cc0 7113   1c1 7114    x. cmul 7118    < clt 7285    <_ cle 7286    / cdiv 7897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-mulrcl 7207  ax-addcom 7208  ax-mulcom 7209  ax-addass 7210  ax-mulass 7211  ax-distr 7212  ax-i2m1 7213  ax-0lt1 7214  ax-1rid 7215  ax-0id 7216  ax-rnegex 7217  ax-precex 7218  ax-cnre 7219  ax-pre-ltirr 7220  ax-pre-ltwlin 7221  ax-pre-lttrn 7222  ax-pre-apti 7223  ax-pre-ltadd 7224  ax-pre-mulgt0 7225  ax-pre-mulext 7226
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419  df-reap 7812  df-ap 7819  df-div 7898
This theorem is referenced by:  lediv2a  8110  lediv12ad  8984
  Copyright terms: Public domain W3C validator