![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simprlr | Unicode version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simprlr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 108 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ad2antrl 474 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem is referenced by: imain 5033 fcof1 5475 fliftfun 5488 addcmpblnq 6655 mulcmpblnq 6656 ordpipqqs 6662 enq0tr 6722 addcmpblnq0 6731 mulcmpblnq0 6732 nnnq0lem1 6734 addnq0mo 6735 mulnq0mo 6736 prarloclemcalc 6790 addlocpr 6824 distrlem4prl 6872 distrlem4pru 6873 addcmpblnr 7014 mulcmpblnrlemg 7015 mulcmpblnr 7016 prsrlem1 7017 addsrmo 7018 mulsrmo 7019 ltsrprg 7022 apreap 7790 apreim 7806 divdivdivap 7904 divsubdivap 7919 ledivdiv 8071 lediv12a 8075 exbtwnz 9373 iseqcaopr 9594 leexp2r 9663 recvguniq 10066 rsqrmo 10098 qredeu 10670 pw2dvdseu 10737 |
Copyright terms: Public domain | W3C validator |