ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ap0d Unicode version

Theorem gt0ap0d 7795
Description: Positive implies apart from zero. Because of the way we define #,  A must be an element of  RR, not just  RR*. (Contributed by Jim Kingdon, 27-Feb-2020.)
Hypotheses
Ref Expression
gt0ap0d.1  |-  ( ph  ->  A  e.  RR )
gt0ap0d.2  |-  ( ph  ->  0  <  A )
Assertion
Ref Expression
gt0ap0d  |-  ( ph  ->  A #  0 )

Proof of Theorem gt0ap0d
StepHypRef Expression
1 gt0ap0d.1 . 2  |-  ( ph  ->  A  e.  RR )
2 gt0ap0d.2 . 2  |-  ( ph  ->  0  <  A )
3 gt0ap0 7792 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
41, 2, 3syl2anc 403 1  |-  ( ph  ->  A #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434   class class class wbr 3793   RRcr 7042   0cc0 7043    < clt 7215   # cap 7748
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-ltxr 7220  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749
This theorem is referenced by:  prodgt0gt0  7996  prodgt0  7997  ltdiv1  8013  ltmuldiv  8019  ledivmul  8022  lt2mul2div  8024  lemuldiv  8026  ltrec  8028  lerec  8029  ltrec1  8033  lerec2  8034  ledivdiv  8035  lediv2  8036  ltdiv23  8037  lediv23  8038  lediv12a  8039  recp1lt1  8044  ledivp1  8048  nnap0  8135  rpap0  8831  modq0  9411  mulqmod0  9412  negqmod0  9413  modqlt  9415  modqdiffl  9417  modqid0  9432  modqcyc  9441  modqmuladdnn0  9450  q2txmodxeq0  9466  modqdi  9474  ltexp2a  9625  leexp2a  9626  expnbnd  9693  expcanlem  9740  expcan  9741  resqrexlemover  10034  resqrexlemcalc1  10038  resqrexlemcalc2  10039  ltabs  10111
  Copyright terms: Public domain W3C validator