ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  om0 Unicode version

Theorem om0 6123
Description: Ordinal multiplication with zero. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
om0  |-  ( A  e.  On  ->  ( A  .o  (/) )  =  (/) )

Proof of Theorem om0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0elon 4175 . . 3  |-  (/)  e.  On
2 omv 6120 . . 3  |-  ( ( A  e.  On  /\  (/) 
e.  On )  -> 
( A  .o  (/) )  =  ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) ) `  (/) ) )
31, 2mpan2 416 . 2  |-  ( A  e.  On  ->  ( A  .o  (/) )  =  ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) ) `  (/) ) )
4 0ex 3925 . . 3  |-  (/)  e.  _V
54rdg0 6057 . 2  |-  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  (/) )  =  (/)
63, 5syl6eq 2131 1  |-  ( A  e.  On  ->  ( A  .o  (/) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    e. wcel 1434   _Vcvv 2610   (/)c0 3267    |-> cmpt 3859   Oncon0 4146   ` cfv 4952  (class class class)co 5564   reccrdg 6039    +o coa 6083    .o comu 6084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-irdg 6040  df-oadd 6090  df-omul 6091
This theorem is referenced by:  nnm0  6140  nnm0r  6144
  Copyright terms: Public domain W3C validator