ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oviec Unicode version

Theorem oviec 6243
Description: Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
Hypotheses
Ref Expression
oviec.1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  ->  H  e.  ( S  X.  S ) )
oviec.2  |-  ( ( ( a  e.  S  /\  b  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  ->  K  e.  ( S  X.  S ) )
oviec.3  |-  ( ( ( c  e.  S  /\  d  e.  S
)  /\  ( t  e.  S  /\  s  e.  S ) )  ->  L  e.  ( S  X.  S ) )
oviec.4  |-  .~  e.  _V
oviec.5  |-  .~  Er  ( S  X.  S
)
oviec.7  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
oviec.8  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( ph  <->  ps )
)
oviec.9  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( ph  <->  ch )
)
oviec.10  |-  .+  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  J
) ) }
oviec.11  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  J  =  K )
oviec.12  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  J  =  L )
oviec.13  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  J  =  H )
oviec.14  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  Q  /\  y  e.  Q )  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) }
oviec.15  |-  Q  =  ( ( S  X.  S ) /.  .~  )
oviec.16  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
c  e.  S  /\  d  e.  S )
)  /\  ( (
g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( ps  /\  ch )  ->  K  .~  L ) )
Assertion
Ref Expression
oviec  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( [ <. A ,  B >. ]  .~  .+^  [ <. C ,  D >. ]  .~  )  =  [ H ]  .~  )
Distinct variable groups:    a, b, c, d, f, u, v, w, x, y, z, C    D, a, b, c, d, f, u, v, w, x, y, z   
x, J, y, z   
g, a, h, A, b, c, d, f, u, v, w, x, y, z    ch, u, v, w, z    f, H, u, v, w, x, y, z    B, a, b, c, d, f, g, h, u, v, w, x, y, z   
f, K, u, v, w, x, y, z    ps, u, v, w, z   
f, L, u, v, w, x, y, z    ph, x, y    s, a, t, S, b, c, d, f, g, h, u, v, w, x, y, z    .+ , a,
b, c, d, g, h, s, t, x, y, z    .~ , a,
b, c, d, g, h, s, t, x, y, z
Allowed substitution hints:    ph( z, w, v, u, t, f, g, h, s, a, b, c, d)    ps( x, y, t, f, g, h, s, a, b, c, d)    ch( x, y, t, f, g, h, s, a, b, c, d)    A( t, s)    B( t, s)    C( t, g, h, s)    D( t, g, h, s)    .+ ( w, v, u, f)    .+^ ( x, y, z, w, v, u, t, f, g, h, s, a, b, c, d)    Q( x, y, z, w, v, u, t, f, g, h, s, a, b, c, d)    .~ ( w, v, u, f)    H( t, g, h, s, a, b, c, d)    J( w, v, u, t, f, g, h, s, a, b, c, d)    K( t, g, h, s, a, b, c, d)    L( t, g, h, s, a, b, c, d)

Proof of Theorem oviec
StepHypRef Expression
1 oviec.4 . . 3  |-  .~  e.  _V
2 oviec.5 . . 3  |-  .~  Er  ( S  X.  S
)
3 oviec.16 . . . 4  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
c  e.  S  /\  d  e.  S )
)  /\  ( (
g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( ps  /\  ch )  ->  K  .~  L ) )
4 oviec.8 . . . . . 6  |-  ( ( ( z  =  a  /\  w  =  b )  /\  ( v  =  c  /\  u  =  d ) )  ->  ( ph  <->  ps )
)
5 oviec.7 . . . . . 6  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
64, 5opbrop 4447 . . . . 5  |-  ( ( ( a  e.  S  /\  b  e.  S
)  /\  ( c  e.  S  /\  d  e.  S ) )  -> 
( <. a ,  b
>.  .~  <. c ,  d
>. 
<->  ps ) )
7 oviec.9 . . . . . 6  |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t  /\  u  =  s ) )  ->  ( ph  <->  ch )
)
87, 5opbrop 4447 . . . . 5  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( t  e.  S  /\  s  e.  S ) )  -> 
( <. g ,  h >.  .~  <. t ,  s
>. 
<->  ch ) )
96, 8bi2anan9 548 . . . 4  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
c  e.  S  /\  d  e.  S )
)  /\  ( (
g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( <. a ,  b >.  .~  <. c ,  d >.  /\  <. g ,  h >.  .~  <. t ,  s >. )  <->  ( ps  /\  ch )
) )
10 oviec.2 . . . . . . 7  |-  ( ( ( a  e.  S  /\  b  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  ->  K  e.  ( S  X.  S ) )
11 oviec.11 . . . . . . 7  |-  ( ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h ) )  ->  J  =  K )
12 oviec.10 . . . . . . 7  |-  .+  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  J
) ) }
1310, 11, 12ovi3 5665 . . . . . 6  |-  ( ( ( a  e.  S  /\  b  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  -> 
( <. a ,  b
>.  .+  <. g ,  h >. )  =  K )
14 oviec.3 . . . . . . 7  |-  ( ( ( c  e.  S  /\  d  e.  S
)  /\  ( t  e.  S  /\  s  e.  S ) )  ->  L  e.  ( S  X.  S ) )
15 oviec.12 . . . . . . 7  |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t  /\  f  =  s ) )  ->  J  =  L )
1614, 15, 12ovi3 5665 . . . . . 6  |-  ( ( ( c  e.  S  /\  d  e.  S
)  /\  ( t  e.  S  /\  s  e.  S ) )  -> 
( <. c ,  d
>.  .+  <. t ,  s
>. )  =  L
)
1713, 16breqan12d 3807 . . . . 5  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
g  e.  S  /\  h  e.  S )
)  /\  ( (
c  e.  S  /\  d  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( <. a ,  b >.  .+  <. g ,  h >. )  .~  ( <. c ,  d
>.  .+  <. t ,  s
>. )  <->  K  .~  L ) )
1817an4s 530 . . . 4  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
c  e.  S  /\  d  e.  S )
)  /\  ( (
g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( <. a ,  b >.  .+  <. g ,  h >. )  .~  ( <. c ,  d
>.  .+  <. t ,  s
>. )  <->  K  .~  L ) )
193, 9, 183imtr4d 196 . . 3  |-  ( ( ( ( a  e.  S  /\  b  e.  S )  /\  (
c  e.  S  /\  d  e.  S )
)  /\  ( (
g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S
) ) )  -> 
( ( <. a ,  b >.  .~  <. c ,  d >.  /\  <. g ,  h >.  .~  <. t ,  s >. )  ->  ( <. a ,  b
>.  .+  <. g ,  h >. )  .~  ( <.
c ,  d >.  .+  <. t ,  s
>. ) ) )
20 oviec.14 . . . 4  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  Q  /\  y  e.  Q )  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) }
21 oviec.15 . . . . . . . 8  |-  Q  =  ( ( S  X.  S ) /.  .~  )
2221eleq2i 2120 . . . . . . 7  |-  ( x  e.  Q  <->  x  e.  ( ( S  X.  S ) /.  .~  ) )
2321eleq2i 2120 . . . . . . 7  |-  ( y  e.  Q  <->  y  e.  ( ( S  X.  S ) /.  .~  ) )
2422, 23anbi12i 441 . . . . . 6  |-  ( ( x  e.  Q  /\  y  e.  Q )  <->  ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) ) )
2524anbi1i 439 . . . . 5  |-  ( ( ( x  e.  Q  /\  y  e.  Q
)  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
)  <->  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S ) /.  .~  ) )  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) )
2625oprabbii 5588 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  Q  /\  y  e.  Q
)  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) }
2720, 26eqtri 2076 . . 3  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  ( ( S  X.  S
) /.  .~  )
)  /\  E. a E. b E. c E. d ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [
( <. a ,  b
>.  .+  <. c ,  d
>. ) ]  .~  )
) }
281, 2, 19, 27th3q 6242 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( [ <. A ,  B >. ]  .~  .+^  [ <. C ,  D >. ]  .~  )  =  [ ( <. A ,  B >.  .+ 
<. C ,  D >. ) ]  .~  )
29 oviec.1 . . . 4  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  ->  H  e.  ( S  X.  S ) )
30 oviec.13 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  J  =  H )
3129, 30, 12ovi3 5665 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .+  <. C ,  D >. )  =  H )
3231eceq1d 6173 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  ->  [ ( <. A ,  B >.  .+  <. C ,  D >. ) ]  .~  =  [ H ]  .~  )
3328, 32eqtrd 2088 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( [ <. A ,  B >. ]  .~  .+^  [ <. C ,  D >. ]  .~  )  =  [ H ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259   E.wex 1397    e. wcel 1409   _Vcvv 2574   <.cop 3406   class class class wbr 3792   {copab 3845    X. cxp 4371  (class class class)co 5540   {coprab 5541    Er wer 6134   [cec 6135   /.cqs 6136
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fv 4938  df-ov 5543  df-oprab 5544  df-er 6137  df-ec 6139  df-qs 6143
This theorem is referenced by:  addpipqqs  6526  mulpipqqs  6529
  Copyright terms: Public domain W3C validator