ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbii Unicode version

Theorem oprabbii 5591
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
oprabbii  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem oprabbii
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqid 2082 . 2  |-  w  =  w
2 oprabbii.1 . . . 4  |-  ( ph  <->  ps )
32a1i 9 . . 3  |-  ( w  =  w  ->  ( ph 
<->  ps ) )
43oprabbidv 5590 . 2  |-  ( w  =  w  ->  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps } )
51, 4ax-mp 7 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1285   {coprab 5544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-oprab 5547
This theorem is referenced by:  oprab4  5606  mpt2v  5625  dfxp3  5851  tposmpt2  5930  oviec  6278  dfplpq2  6606  dfmpq2  6607  dfmq0qs  6681  dfplq0qs  6682  addsrpr  6984  mulsrpr  6985  addcnsr  7064  mulcnsr  7065  addvalex  7074
  Copyright terms: Public domain W3C validator