Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbii Unicode version

Theorem oprabbii 5591
 Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1
Assertion
Ref Expression
oprabbii
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem oprabbii
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2082 . 2
2 oprabbii.1 . . . 4
32a1i 9 . . 3
43oprabbidv 5590 . 2
51, 4ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wb 103   wceq 1285  coprab 5544 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-oprab 5547 This theorem is referenced by:  oprab4  5606  mpt2v  5625  dfxp3  5851  tposmpt2  5930  oviec  6278  dfplpq2  6606  dfmpq2  6607  dfmq0qs  6681  dfplq0qs  6682  addsrpr  6984  mulsrpr  6985  addcnsr  7064  mulcnsr  7065  addvalex  7074
 Copyright terms: Public domain W3C validator