ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcnvtr Unicode version

Theorem relcnvtr 4868
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
relcnvtr  |-  ( Rel 
R  ->  ( ( R  o.  R )  C_  R  <->  ( `' R  o.  `' R )  C_  `' R ) )

Proof of Theorem relcnvtr
StepHypRef Expression
1 cnvco 4548 . . 3  |-  `' ( R  o.  R )  =  ( `' R  o.  `' R )
2 cnvss 4536 . . 3  |-  ( ( R  o.  R ) 
C_  R  ->  `' ( R  o.  R
)  C_  `' R
)
31, 2syl5eqssr 3018 . 2  |-  ( ( R  o.  R ) 
C_  R  ->  ( `' R  o.  `' R )  C_  `' R )
4 cnvco 4548 . . . 4  |-  `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )
5 cnvss 4536 . . . 4  |-  ( ( `' R  o.  `' R )  C_  `' R  ->  `' ( `' R  o.  `' R
)  C_  `' `' R )
6 sseq1 2994 . . . . 5  |-  ( `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )  ->  ( `' ( `' R  o.  `' R )  C_  `' `' R  <->  ( `' `' R  o.  `' `' R )  C_  `' `' R ) )
7 dfrel2 4799 . . . . . . 7  |-  ( Rel 
R  <->  `' `' R  =  R
)
8 coeq1 4521 . . . . . . . . . 10  |-  ( `' `' R  =  R  ->  ( `' `' R  o.  `' `' R )  =  ( R  o.  `' `' R ) )
9 coeq2 4522 . . . . . . . . . 10  |-  ( `' `' R  =  R  ->  ( R  o.  `' `' R )  =  ( R  o.  R ) )
108, 9eqtrd 2088 . . . . . . . . 9  |-  ( `' `' R  =  R  ->  ( `' `' R  o.  `' `' R )  =  ( R  o.  R ) )
11 id 19 . . . . . . . . 9  |-  ( `' `' R  =  R  ->  `' `' R  =  R
)
1210, 11sseq12d 3002 . . . . . . . 8  |-  ( `' `' R  =  R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  <->  ( R  o.  R )  C_  R
) )
1312biimpd 136 . . . . . . 7  |-  ( `' `' R  =  R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( R  o.  R )  C_  R ) )
147, 13sylbi 118 . . . . . 6  |-  ( Rel 
R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( R  o.  R )  C_  R ) )
1514com12 30 . . . . 5  |-  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( Rel 
R  ->  ( R  o.  R )  C_  R
) )
166, 15syl6bi 156 . . . 4  |-  ( `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )  ->  ( `' ( `' R  o.  `' R )  C_  `' `' R  ->  ( Rel 
R  ->  ( R  o.  R )  C_  R
) ) )
174, 5, 16mpsyl 63 . . 3  |-  ( ( `' R  o.  `' R )  C_  `' R  ->  ( Rel  R  ->  ( R  o.  R
)  C_  R )
)
1817com12 30 . 2  |-  ( Rel 
R  ->  ( ( `' R  o.  `' R )  C_  `' R  ->  ( R  o.  R )  C_  R
) )
193, 18impbid2 135 1  |-  ( Rel 
R  ->  ( ( R  o.  R )  C_  R  <->  ( `' R  o.  `' R )  C_  `' R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102    = wceq 1259    C_ wss 2945   `'ccnv 4372    o. ccom 4377   Rel wrel 4378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator