ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexadd Unicode version

Theorem rexadd 9635
Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexadd  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )

Proof of Theorem rexadd
StepHypRef Expression
1 rexr 7811 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 rexr 7811 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
3 xaddval 9628 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) ) )
41, 2, 3syl2an 287 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) ) )
5 renepnf 7813 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
6 ifnefalse 3485 . . . . 5  |-  ( A  =/= +oo  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) )  =  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) )
75, 6syl 14 . . . 4  |-  ( A  e.  RR  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  =  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )
8 renemnf 7814 . . . . 5  |-  ( A  e.  RR  ->  A  =/= -oo )
9 ifnefalse 3485 . . . . 5  |-  ( A  =/= -oo  ->  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) )
108, 9syl 14 . . . 4  |-  ( A  e.  RR  ->  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )
117, 10eqtrd 2172 . . 3  |-  ( A  e.  RR  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )
12 renepnf 7813 . . . . 5  |-  ( B  e.  RR  ->  B  =/= +oo )
13 ifnefalse 3485 . . . . 5  |-  ( B  =/= +oo  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  =  if ( B  = -oo , -oo ,  ( A  +  B ) ) )
1412, 13syl 14 . . . 4  |-  ( B  e.  RR  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  =  if ( B  = -oo , -oo ,  ( A  +  B ) ) )
15 renemnf 7814 . . . . 5  |-  ( B  e.  RR  ->  B  =/= -oo )
16 ifnefalse 3485 . . . . 5  |-  ( B  =/= -oo  ->  if ( B  = -oo , -oo ,  ( A  +  B ) )  =  ( A  +  B
) )
1715, 16syl 14 . . . 4  |-  ( B  e.  RR  ->  if ( B  = -oo , -oo ,  ( A  +  B ) )  =  ( A  +  B ) )
1814, 17eqtrd 2172 . . 3  |-  ( B  e.  RR  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  =  ( A  +  B ) )
1911, 18sylan9eq 2192 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  if ( A  = +oo ,  if ( B  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo , 
0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  =  ( A  +  B
) )
204, 19eqtrd 2172 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    =/= wne 2308   ifcif 3474  (class class class)co 5774   RRcr 7619   0cc0 7620    + caddc 7623   +oocpnf 7797   -oocmnf 7798   RR*cxr 7799   +ecxad 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717  ax-rnegex 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-xadd 9560
This theorem is referenced by:  rexsub  9636  rexaddd  9637  xaddnemnf  9640  xaddnepnf  9641  xnegid  9642  xaddcom  9644  xaddid1  9645  xnn0xadd0  9650  xnegdi  9651  xaddass  9652  xltadd1  9659  isxmet2d  12517  mettri2  12531  bl2in  12572  xmeter  12605
  Copyright terms: Public domain W3C validator