ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddnemnf Unicode version

Theorem xaddnemnf 9640
Description: Closure of extended real addition in the subset  RR*  /  { -oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnemnf  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )
)  ->  ( A +e B )  =/= -oo )

Proof of Theorem xaddnemnf
StepHypRef Expression
1 xrnemnf 9564 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )
2 xrnemnf 9564 . . . 4  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  <->  ( B  e.  RR  \/  B  = +oo ) )
3 rexadd 9635 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
4 readdcl 7746 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
53, 4eqeltrd 2216 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  e.  RR )
65renemnfd 7817 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =/= -oo )
7 oveq2 5782 . . . . . . 7  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
8 rexr 7811 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
9 renemnf 7814 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= -oo )
10 xaddpnf1 9629 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
118, 9, 10syl2anc 408 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e +oo )  = +oo )
127, 11sylan9eqr 2194 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  = +oo )
13 pnfnemnf 7820 . . . . . . 7  |- +oo  =/= -oo
1413a1i 9 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  -> +oo  =/= -oo )
1512, 14eqnetrd 2332 . . . . 5  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  =/= -oo )
166, 15jaodan 786 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo ) )  ->  ( A +e B )  =/= -oo )
172, 16sylan2b 285 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> 
( A +e
B )  =/= -oo )
18 oveq1 5781 . . . . 5  |-  ( A  = +oo  ->  ( A +e B )  =  ( +oo +e B ) )
19 xaddpnf2 9630 . . . . 5  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
2018, 19sylan9eq 2192 . . . 4  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> 
( A +e
B )  = +oo )
2113a1i 9 . . . 4  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> +oo  =/= -oo )
2220, 21eqnetrd 2332 . . 3  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> 
( A +e
B )  =/= -oo )
2317, 22jaoian 784 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo )  /\  ( B  e. 
RR*  /\  B  =/= -oo ) )  ->  ( A +e B )  =/= -oo )
241, 23sylanb 282 1  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )
)  ->  ( A +e B )  =/= -oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480    =/= wne 2308  (class class class)co 5774   RRcr 7619    + caddc 7623   +oocpnf 7797   -oocmnf 7798   RR*cxr 7799   +ecxad 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717  ax-rnegex 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-xadd 9560
This theorem is referenced by:  xaddass  9652  xlt2add  9663  xadd4d  9668  xleaddadd  9670
  Copyright terms: Public domain W3C validator