ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo3 Unicode version

Theorem rmo3 2877
Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1  |-  F/ y
ph
Assertion
Ref Expression
rmo3  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem rmo3
StepHypRef Expression
1 df-rmo 2331 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 sban 1845 . . . . . . . . . . 11  |-  ( [ y  /  x ]
( x  e.  A  /\  ph )  <->  ( [
y  /  x ]
x  e.  A  /\  [ y  /  x ] ph ) )
3 clelsb3 2158 . . . . . . . . . . . 12  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
43anbi1i 439 . . . . . . . . . . 11  |-  ( ( [ y  /  x ] x  e.  A  /\  [ y  /  x ] ph )  <->  ( y  e.  A  /\  [ y  /  x ] ph ) )
52, 4bitri 177 . . . . . . . . . 10  |-  ( [ y  /  x ]
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  [ y  /  x ] ph ) )
65anbi2i 438 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  <->  ( (
x  e.  A  /\  ph )  /\  ( y  e.  A  /\  [
y  /  x ] ph ) ) )
7 an4 528 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  /\  (
y  e.  A  /\  [ y  /  x ] ph ) )  <->  ( (
x  e.  A  /\  y  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
8 ancom 257 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  <->  ( y  e.  A  /\  x  e.  A )
)
98anbi1i 439 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( ph  /\ 
[ y  /  x ] ph ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
106, 7, 93bitri 199 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
1110imbi1i 231 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y )  <->  ( (
( y  e.  A  /\  x  e.  A
)  /\  ( ph  /\ 
[ y  /  x ] ph ) )  ->  x  =  y )
)
12 impexp 254 . . . . . . 7  |-  ( ( ( ( y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [ y  /  x ] ph ) )  ->  x  =  y )  <->  ( ( y  e.  A  /\  x  e.  A )  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
13 impexp 254 . . . . . . 7  |-  ( ( ( y  e.  A  /\  x  e.  A
)  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
)  <->  ( y  e.  A  ->  ( x  e.  A  ->  ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
1411, 12, 133bitri 199 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y )  <->  ( y  e.  A  ->  ( x  e.  A  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
1514albii 1375 . . . . 5  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
16 df-ral 2328 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
17 r19.21v 2413 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
1815, 16, 173bitr2i 201 . . . 4  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
1918albii 1375 . . 3  |-  ( A. x A. y ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
20 nfv 1437 . . . . 5  |-  F/ y  x  e.  A
21 rmo2.1 . . . . 5  |-  F/ y
ph
2220, 21nfan 1473 . . . 4  |-  F/ y ( x  e.  A  /\  ph )
2322mo3 1970 . . 3  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y ) )
24 df-ral 2328 . . 3  |-  ( A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
2519, 23, 243bitr4i 205 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
261, 25bitri 177 1  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102   A.wal 1257   F/wnf 1365    e. wcel 1409   [wsb 1661   E*wmo 1917   A.wral 2323   E*wrmo 2326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-cleq 2049  df-clel 2052  df-ral 2328  df-rmo 2331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator