ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpnegap Unicode version

Theorem rpnegap 9481
Description: Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
Assertion
Ref Expression
rpnegap  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( A  e.  RR+  \/_  -u A  e.  RR+ ) )

Proof of Theorem rpnegap
StepHypRef Expression
1 0re 7773 . . . . . . 7  |-  0  e.  RR
2 reapltxor 8358 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A #  0  <->  ( A  <  0  \/_  0  <  A ) ) )
31, 2mpan2 421 . . . . . 6  |-  ( A  e.  RR  ->  ( A #  0  <->  ( A  <  0  \/_  0  < 
A ) ) )
4 xorcom 1366 . . . . . 6  |-  ( ( A  <  0  \/_  0  <  A )  <-> 
( 0  <  A  \/_  A  <  0 ) )
53, 4syl6bb 195 . . . . 5  |-  ( A  e.  RR  ->  ( A #  0  <->  ( 0  < 
A  \/_  A  <  0 ) ) )
65pm5.32i 449 . . . 4  |-  ( ( A  e.  RR  /\  A #  0 )  <->  ( A  e.  RR  /\  ( 0  <  A  \/_  A  <  0 ) ) )
7 anxordi 1378 . . . 4  |-  ( ( A  e.  RR  /\  ( 0  <  A  \/_  A  <  0 ) )  <->  ( ( A  e.  RR  /\  0  <  A )  \/_  ( A  e.  RR  /\  A  <  0 ) ) )
86, 7bitri 183 . . 3  |-  ( ( A  e.  RR  /\  A #  0 )  <->  ( ( A  e.  RR  /\  0  <  A )  \/_  ( A  e.  RR  /\  A  <  0 ) ) )
98biimpi 119 . 2  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
( A  e.  RR  /\  0  <  A ) 
\/_  ( A  e.  RR  /\  A  <  0 ) ) )
10 elrp 9450 . . . 4  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
1110a1i 9 . . 3  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) ) )
12 renegcl 8030 . . . . . . 7  |-  ( A  e.  RR  ->  -u A  e.  RR )
1312biantrurd 303 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  -u A  <->  ( -u A  e.  RR  /\  0  <  -u A ) ) )
14 elrp 9450 . . . . . 6  |-  ( -u A  e.  RR+  <->  ( -u A  e.  RR  /\  0  <  -u A ) )
1513, 14syl6rbbr 198 . . . . 5  |-  ( A  e.  RR  ->  ( -u A  e.  RR+  <->  0  <  -u A ) )
16 lt0neg1 8237 . . . . 5  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <  -u A ) )
17 ibar 299 . . . . 5  |-  ( A  e.  RR  ->  ( A  <  0  <->  ( A  e.  RR  /\  A  <  0 ) ) )
1815, 16, 173bitr2d 215 . . . 4  |-  ( A  e.  RR  ->  ( -u A  e.  RR+  <->  ( A  e.  RR  /\  A  <  0 ) ) )
1918adantr 274 . . 3  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( -u A  e.  RR+  <->  ( A  e.  RR  /\  A  <  0 ) ) )
2011, 19xorbi12d 1360 . 2  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
( A  e.  RR+  \/_  -u A  e.  RR+ )  <->  ( ( A  e.  RR  /\  0  <  A ) 
\/_  ( A  e.  RR  /\  A  <  0 ) ) ) )
219, 20mpbird 166 1  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( A  e.  RR+  \/_  -u A  e.  RR+ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/_ wxo 1353    e. wcel 1480   class class class wbr 3929   RRcr 7626   0cc0 7627    < clt 7807   -ucneg 7941   # cap 8350   RR+crp 9448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-ltxr 7812  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-rp 9449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator