ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi8 Unicode version

Theorem sbthlemi8 6852
Description: Lemma for isbth 6855. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlemi8  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlemi8
StepHypRef Expression
1 funres11 5195 . . . 4  |-  ( Fun  `' f  ->  Fun  `' ( f  |`  U. D
) )
21ad2antlr 480 . . 3  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' ( f  |`  U. D ) )
3 funcnvcnv 5182 . . . . . 6  |-  ( Fun  g  ->  Fun  `' `' g )
4 funres11 5195 . . . . . 6  |-  ( Fun  `' `' g  ->  Fun  `' ( `' g  |`  ( A 
\  U. D ) ) )
53, 4syl 14 . . . . 5  |-  ( Fun  g  ->  Fun  `' ( `' g  |`  ( A 
\  U. D ) ) )
65ad2antrr 479 . . . 4  |-  ( ( ( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  ->  Fun  `' ( `' g  |`  ( A  \  U. D
) ) )
76ad2antrl 481 . . 3  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' ( `' g  |`  ( A  \  U. D ) ) )
8 simpll 518 . . . 4  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> EXMID )
9 simprll 526 . . . . 5  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( Fun  g  /\  dom  g  =  B
) )
109simprd 113 . . . 4  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  dom  g  =  B
)
11 simprlr 527 . . . 4  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  g  C_  A )
12 simprr 521 . . . 4  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' g )
13 df-ima 4552 . . . . . . 7  |-  ( f
" U. D )  =  ran  ( f  |`  U. D )
14 df-rn 4550 . . . . . . 7  |-  ran  (
f  |`  U. D )  =  dom  `' ( f  |`  U. D )
1513, 14eqtr2i 2161 . . . . . 6  |-  dom  `' ( f  |`  U. D
)  =  ( f
" U. D )
16 df-ima 4552 . . . . . . . 8  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
17 df-rn 4550 . . . . . . . 8  |-  ran  ( `' g  |`  ( A 
\  U. D ) )  =  dom  `' ( `' g  |`  ( A 
\  U. D ) )
1816, 17eqtri 2160 . . . . . . 7  |-  ( `' g " ( A 
\  U. D ) )  =  dom  `' ( `' g  |`  ( A 
\  U. D ) )
19 sbthlem.1 . . . . . . . 8  |-  A  e. 
_V
20 sbthlem.2 . . . . . . . 8  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
2119, 20sbthlemi4 6848 . . . . . . 7  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
2218, 21syl5eqr 2186 . . . . . 6  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  dom  `' ( `' g  |`  ( A  \  U. D
) )  =  ( B  \  ( f
" U. D ) ) )
23 ineq12 3272 . . . . . 6  |-  ( ( dom  `' ( f  |`  U. D )  =  ( f " U. D )  /\  dom  `' ( `' g  |`  ( A  \  U. D
) )  =  ( B  \  ( f
" U. D ) ) )  ->  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  ( ( f " U. D )  i^i  ( B  \  ( f " U. D ) ) ) )
2415, 22, 23sylancr 410 . . . . 5  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  ( ( f " U. D )  i^i  ( B  \  ( f " U. D ) ) ) )
25 disjdif 3435 . . . . 5  |-  ( ( f " U. D
)  i^i  ( B  \  ( f " U. D ) ) )  =  (/)
2624, 25syl6eq 2188 . . . 4  |-  ( (EXMID  /\  ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  (/) )
278, 10, 11, 12, 26syl121anc 1221 . . 3  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  -> 
( dom  `' (
f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A 
\  U. D ) ) )  =  (/) )
28 funun 5167 . . 3  |-  ( ( ( Fun  `' ( f  |`  U. D )  /\  Fun  `' ( `' g  |`  ( A 
\  U. D ) ) )  /\  ( dom  `' ( f  |`  U. D )  i^i  dom  `' ( `' g  |`  ( A  \  U. D
) ) )  =  (/) )  ->  Fun  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A 
\  U. D ) ) ) )
292, 7, 27, 28syl21anc 1215 . 2  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A  \  U. D ) ) ) )
30 sbthlem.3 . . . . 5  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
3130cnveqi 4714 . . . 4  |-  `' H  =  `' ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) )
32 cnvun 4944 . . . 4  |-  `' ( ( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( `' ( f  |`  U. D
)  u.  `' ( `' g  |`  ( A 
\  U. D ) ) )
3331, 32eqtri 2160 . . 3  |-  `' H  =  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A  \ 
U. D ) ) )
3433funeqi 5144 . 2  |-  ( Fun  `' H  <->  Fun  ( `' ( f  |`  U. D )  u.  `' ( `' g  |`  ( A  \ 
U. D ) ) ) )
3529, 34sylibr 133 1  |-  ( ( (EXMID 
/\  Fun  `' f
)  /\  ( (
( Fun  g  /\  dom  g  =  B
)  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  Fun  `' H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   {cab 2125   _Vcvv 2686    \ cdif 3068    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   U.cuni 3736  EXMIDwem 4118   `'ccnv 4538   dom cdm 4539   ran crn 4540    |` cres 4541   "cima 4542   Fun wfun 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-exmid 4119  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-fun 5125
This theorem is referenced by:  sbthlemi9  6853
  Copyright terms: Public domain W3C validator