ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sefvex Unicode version

Theorem sefvex 5227
Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
sefvex  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( F `  A )  e.  _V )

Proof of Theorem sefvex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2605 . . . . . . . 8  |-  x  e. 
_V
21a1i 9 . . . . . . 7  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x  e.  _V )
3 simp3 941 . . . . . . . 8  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  A F x )
4 simp2 940 . . . . . . . . 9  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  A  e.  _V )
5 brcnvg 4544 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  A  e.  _V )  ->  ( x `' F A 
<->  A F x ) )
61, 4, 5sylancr 405 . . . . . . . 8  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  (
x `' F A  <-> 
A F x ) )
73, 6mpbird 165 . . . . . . 7  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x `' F A )
8 breq1 3796 . . . . . . . 8  |-  ( y  =  x  ->  (
y `' F A  <-> 
x `' F A ) )
98elrab 2750 . . . . . . 7  |-  ( x  e.  { y  e. 
_V  |  y `' F A }  <->  ( x  e.  _V  /\  x `' F A ) )
102, 7, 9sylanbrc 408 . . . . . 6  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x  e.  { y  e.  _V  |  y `' F A } )
11 elssuni 3637 . . . . . 6  |-  ( x  e.  { y  e. 
_V  |  y `' F A }  ->  x 
C_  U. { y  e. 
_V  |  y `' F A } )
1210, 11syl 14 . . . . 5  |-  ( ( `' F Se  _V  /\  A  e.  _V  /\  A F x )  ->  x  C_ 
U. { y  e. 
_V  |  y `' F A } )
13123expia 1141 . . . 4  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( A F x  ->  x  C_ 
U. { y  e. 
_V  |  y `' F A } ) )
1413alrimiv 1796 . . 3  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  A. x
( A F x  ->  x  C_  U. {
y  e.  _V  | 
y `' F A } ) )
15 fvss 5220 . . 3  |-  ( A. x ( A F x  ->  x  C_  U. {
y  e.  _V  | 
y `' F A } )  ->  ( F `  A )  C_ 
U. { y  e. 
_V  |  y `' F A } )
1614, 15syl 14 . 2  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( F `  A )  C_ 
U. { y  e. 
_V  |  y `' F A } )
17 seex 4098 . . 3  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  { y  e.  _V  |  y `' F A }  e.  _V )
18 uniexg 4201 . . 3  |-  ( { y  e.  _V  | 
y `' F A }  e.  _V  ->  U. { y  e.  _V  |  y `' F A }  e.  _V )
1917, 18syl 14 . 2  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  U. {
y  e.  _V  | 
y `' F A }  e.  _V )
20 ssexg 3925 . 2  |-  ( ( ( F `  A
)  C_  U. { y  e.  _V  |  y `' F A }  /\  U. { y  e.  _V  |  y `' F A }  e.  _V )  ->  ( F `  A )  e.  _V )
2116, 19, 20syl2anc 403 1  |-  ( ( `' F Se  _V  /\  A  e.  _V )  ->  ( F `  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920   A.wal 1283    e. wcel 1434   {crab 2353   _Vcvv 2602    C_ wss 2974   U.cuni 3609   class class class wbr 3793   Se wse 4092   `'ccnv 4370   ` cfv 4932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-se 4096  df-cnv 4379  df-iota 4897  df-fv 4940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator