![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniexg | Unicode version |
Description: The ZF Axiom of Union in
class notation, in the form of a theorem
instead of an inference. We use the antecedent ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uniexg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3618 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq1d 2148 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | vex 2605 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 3 | uniex 4200 |
. 2
![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | vtoclg 2659 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-un 4196 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-v 2604 df-uni 3610 |
This theorem is referenced by: snnex 4207 uniexb 4231 ssonuni 4240 dmexg 4624 rnexg 4625 elxp4 4838 elxp5 4839 relrnfvex 5224 fvexg 5225 sefvex 5227 riotaexg 5503 iunexg 5777 1stvalg 5800 2ndvalg 5801 cnvf1o 5877 brtpos2 5900 tfrlemiex 5980 tfr1onlemex 5996 tfrcllemex 6009 en1bg 6347 en1uniel 6351 |
Copyright terms: Public domain | W3C validator |