ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle1g Unicode version

Theorem strle1g 12049
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strle1.i  |-  I  e.  NN
strle1.a  |-  A  =  I
Assertion
Ref Expression
strle1g  |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )

Proof of Theorem strle1g
StepHypRef Expression
1 strle1.i . . . 4  |-  I  e.  NN
21nnrei 8729 . . . . 5  |-  I  e.  RR
32leidi 8247 . . . 4  |-  I  <_  I
41, 1, 33pm3.2i 1159 . . 3  |-  ( I  e.  NN  /\  I  e.  NN  /\  I  <_  I )
54a1i 9 . 2  |-  ( X  e.  V  ->  (
I  e.  NN  /\  I  e.  NN  /\  I  <_  I ) )
6 difss 3202 . . 3  |-  ( {
<. A ,  X >. } 
\  { (/) } ) 
C_  { <. A ,  X >. }
7 strle1.a . . . . 5  |-  A  =  I
87, 1eqeltri 2212 . . . 4  |-  A  e.  NN
9 funsng 5169 . . . 4  |-  ( ( A  e.  NN  /\  X  e.  V )  ->  Fun  { <. A ,  X >. } )
108, 9mpan 420 . . 3  |-  ( X  e.  V  ->  Fun  {
<. A ,  X >. } )
11 funss 5142 . . 3  |-  ( ( { <. A ,  X >. }  \  { (/) } )  C_  { <. A ,  X >. }  ->  ( Fun  { <. A ,  X >. }  ->  Fun  ( {
<. A ,  X >. } 
\  { (/) } ) ) )
126, 10, 11mpsyl 65 . 2  |-  ( X  e.  V  ->  Fun  ( { <. A ,  X >. }  \  { (/) } ) )
13 opexg 4150 . . . 4  |-  ( ( A  e.  NN  /\  X  e.  V )  -> 
<. A ,  X >.  e. 
_V )
148, 13mpan 420 . . 3  |-  ( X  e.  V  ->  <. A ,  X >.  e.  _V )
15 snexg 4108 . . 3  |-  ( <. A ,  X >.  e. 
_V  ->  { <. A ,  X >. }  e.  _V )
1614, 15syl 14 . 2  |-  ( X  e.  V  ->  { <. A ,  X >. }  e.  _V )
17 dmsnopg 5010 . . . 4  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. }  =  { A }
)
187sneqi 3539 . . . . 5  |-  { A }  =  { I }
191nnzi 9075 . . . . . 6  |-  I  e.  ZZ
20 fzsn 9846 . . . . . 6  |-  ( I  e.  ZZ  ->  (
I ... I )  =  { I } )
2119, 20ax-mp 5 . . . . 5  |-  ( I ... I )  =  { I }
2218, 21eqtr4i 2163 . . . 4  |-  { A }  =  ( I ... I )
2317, 22syl6eq 2188 . . 3  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. }  =  ( I ... I ) )
24 eqimss 3151 . . 3  |-  ( dom 
{ <. A ,  X >. }  =  ( I ... I )  ->  dom  { <. A ,  X >. }  C_  ( I ... I ) )
2523, 24syl 14 . 2  |-  ( X  e.  V  ->  dom  {
<. A ,  X >. } 
C_  ( I ... I ) )
26 isstructr 11974 . 2  |-  ( ( ( I  e.  NN  /\  I  e.  NN  /\  I  <_  I )  /\  ( Fun  ( { <. A ,  X >. }  \  { (/) } )  /\  {
<. A ,  X >. }  e.  _V  /\  dom  {
<. A ,  X >. } 
C_  ( I ... I ) ) )  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
275, 12, 16, 25, 26syl13anc 1218 1  |-  ( X  e.  V  ->  { <. A ,  X >. } Struct  <. I ,  I >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 962    = wceq 1331    e. wcel 1480   _Vcvv 2686    \ cdif 3068    C_ wss 3071   (/)c0 3363   {csn 3527   <.cop 3530   class class class wbr 3929   dom cdm 4539   Fun wfun 5117  (class class class)co 5774    <_ cle 7801   NNcn 8720   ZZcz 9054   ...cfz 9790   Struct cstr 11955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-z 9055  df-uz 9327  df-fz 9791  df-struct 11961
This theorem is referenced by:  strle2g  12050  strle3g  12051  1strstrg  12057  srngstrd  12081  lmodstrd  12092
  Copyright terms: Public domain W3C validator