ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq2d Unicode version

Theorem sumeq2d 10397
Description: Equality theorem for sum. (Contributed by Jim Kingdon, 11-Feb-2022.)
Hypothesis
Ref Expression
sumeq2d.bc  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
Assertion
Ref Expression
sumeq2d  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem sumeq2d
Dummy variables  f  j  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  /\  n  e.  A
)  ->  n  e.  A )
2 sumeq2d.bc . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  B  =  C )
32ralrimiva 2439 . . . . . . . . . . . . 13  |-  ( ph  ->  A. k  e.  A  B  =  C )
43ad4antr 478 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  /\  n  e.  A
)  ->  A. k  e.  A  B  =  C )
5 nfcsb1v 2947 . . . . . . . . . . . . . 14  |-  F/_ k [_ n  /  k ]_ B
6 nfcsb1v 2947 . . . . . . . . . . . . . 14  |-  F/_ k [_ n  /  k ]_ C
75, 6nfeq 2230 . . . . . . . . . . . . 13  |-  F/ k
[_ n  /  k ]_ B  =  [_ n  /  k ]_ C
8 csbeq1a 2925 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  B  =  [_ n  /  k ]_ B )
9 csbeq1a 2925 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  C  =  [_ n  /  k ]_ C )
108, 9eqeq12d 2097 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( B  =  C  <->  [_ n  / 
k ]_ B  =  [_ n  /  k ]_ C
) )
117, 10rspc 2704 . . . . . . . . . . . 12  |-  ( n  e.  A  ->  ( A. k  e.  A  B  =  C  ->  [_ n  /  k ]_ B  =  [_ n  / 
k ]_ C ) )
121, 4, 11sylc 61 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  /\  n  e.  A
)  ->  [_ n  / 
k ]_ B  =  [_ n  /  k ]_ C
)
13 simpllr 501 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  ->  m  e.  ZZ )
14 simplrl 502 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  ->  A  C_  ( ZZ>= `  m )
)
15 simplrr 503 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  ->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
16 simpr 108 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
1713, 14, 15, 16sumdc 10396 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  -> DECID  n  e.  A
)
1812, 17ifeq1dadc 3396 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  /\  n  e.  ZZ )  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  =  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )
1918mpteq2dva 3888 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  -> 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )
20 iseqeq3 9578 . . . . . . . . 9  |-  ( ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )  ->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  =  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC ) )
2119, 20syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  ->  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  =  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC ) )
2221breq1d 3815 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) )  -> 
(  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x  <->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) )
2322pm5.32da 440 . . . . . 6  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  <->  ( ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) ) )
24 df-3an 922 . . . . . 6  |-  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  <->  ( ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x ) )
25 df-3an 922 . . . . . 6  |-  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  <->  ( ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) )
2623, 24, 253bitr4g 221 . . . . 5  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  <->  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) ) )
2726rexbidva 2370 . . . 4  |-  ( ph  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x ) ) )
28 f1of 5177 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  f :
( 1 ... m
) --> A )
2928ad3antlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  f : ( 1 ... m ) --> A )
30 simplr 497 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  NN )
31 simpr 108 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  <_  m )
32 simp-4r 509 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  NN )
3332nnzd 8601 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  m  e.  ZZ )
34 fznn 9234 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
3533, 34syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
n  e.  ( 1 ... m )  <->  ( n  e.  NN  /\  n  <_  m ) ) )
3630, 31, 35mpbir2and 886 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  n  e.  ( 1 ... m
) )
3729, 36ffvelrnd 5355 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  (
f `  n )  e.  A )
383ad4antr 478 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  A. k  e.  A  B  =  C )
39 nfcsb1v 2947 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ B
40 nfcsb1v 2947 . . . . . . . . . . . . . . 15  |-  F/_ k [_ ( f `  n
)  /  k ]_ C
4139, 40nfeq 2230 . . . . . . . . . . . . . 14  |-  F/ k
[_ ( f `  n )  /  k ]_ B  =  [_ (
f `  n )  /  k ]_ C
42 csbeq1a 2925 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  B  =  [_ ( f `  n )  /  k ]_ B )
43 csbeq1a 2925 . . . . . . . . . . . . . . 15  |-  ( k  =  ( f `  n )  ->  C  =  [_ ( f `  n )  /  k ]_ C )
4442, 43eqeq12d 2097 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  n )  ->  ( B  =  C  <->  [_ ( f `
 n )  / 
k ]_ B  =  [_ ( f `  n
)  /  k ]_ C ) )
4541, 44rspc 2704 . . . . . . . . . . . . 13  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  B  =  C  ->  [_ ( f `  n
)  /  k ]_ B  =  [_ ( f `
 n )  / 
k ]_ C ) )
4637, 38, 45sylc 61 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  /\  n  <_  m )  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  n )  /  k ]_ C )
47 simpr 108 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  NN )
4847nnzd 8601 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  n  e.  ZZ )
49 simpllr 501 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  NN )
5049nnzd 8601 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  m  e.  ZZ )
51 zdcle 8557 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  m  e.  ZZ )  -> DECID  n  <_  m )
5248, 50, 51syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  -> DECID 
n  <_  m )
5346, 52ifeq1dadc 3396 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  n  e.  NN )  ->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 )  =  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) )
5453mpteq2dva 3888 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) )
55 iseqeq3 9578 . . . . . . . . . 10  |-  ( ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) )  ->  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC )  =  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ,  CC ) )
5654, 55syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC )  =  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ,  CC ) )
5756fveq1d 5231 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC ) `
 m )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ,  CC ) `
 m ) )
5857eqeq2d 2094 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC ) `
 m )  <->  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ,  CC ) `
 m ) ) )
5958pm5.32da 440 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) )  <-> 
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ,  CC ) `
 m ) ) ) )
6059exbidv 1748 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) )  <->  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ,  CC ) `
 m ) ) ) )
6160rexbidva 2370 . . . 4  |-  ( ph  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ,  CC ) `
 m ) ) ) )
6227, 61orbi12d 740 . . 3  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ,  CC ) `
 m ) ) ) ) )
6362iotabidv 4938 . 2  |-  ( ph  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) ) )  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ,  CC ) `
 m ) ) ) ) )
64 df-isum 10392 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ,  CC ) `
 m ) ) ) )
65 df-isum 10392 . 2  |-  sum_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) ,  CC )  ~~>  x )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ C ,  0 ) ) ,  CC ) `
 m ) ) ) )
6663, 64, 653eqtr4g 2140 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  sum_ k  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662  DECID wdc 776    /\ w3a 920    = wceq 1285   E.wex 1422    e. wcel 1434   A.wral 2353   E.wrex 2354   [_csb 2917    C_ wss 2982   ifcif 3368   class class class wbr 3805    |-> cmpt 3859   iotacio 4915   -->wf 4948   -1-1-onto->wf1o 4951   ` cfv 4952  (class class class)co 5563   CCcc 7093   0cc0 7095   1c1 7096    + caddc 7098    <_ cle 7268   NNcn 8158   ZZcz 8484   ZZ>=cuz 8752   ...cfz 9157    seqcseq 9573    ~~> cli 10318   sum_csu 10391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-ltadd 7206
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753  df-fz 9158  df-iseq 9574  df-isum 10392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator