ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprleubex Unicode version

Theorem suprleubex 8712
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.)
Hypotheses
Ref Expression
suprubex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
suprubex.ss  |-  ( ph  ->  A  C_  RR )
suprlubex.b  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
suprleubex  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. z  e.  A  z  <_  B ) )
Distinct variable groups:    x, A, y, z    ph, x    z, B
Allowed substitution hints:    ph( y, z)    B( x, y)

Proof of Theorem suprleubex
Dummy variables  f  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7844 . . . . . . . 8  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 275 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 suprubex.ex . . . . . . 7  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
42, 3supclti 6885 . . . . . 6  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
5 suprlubex.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
64, 5lenltd 7880 . . . . 5  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  -.  B  <  sup ( A ,  RR ,  <  ) ) )
7 suprubex.ss . . . . . 6  |-  ( ph  ->  A  C_  RR )
83, 7, 5suprnubex 8711 . . . . 5  |-  ( ph  ->  ( -.  B  <  sup ( A ,  RR ,  <  )  <->  A. z  e.  A  -.  B  <  z ) )
96, 8bitrd 187 . . . 4  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. z  e.  A  -.  B  <  z ) )
10 breq2 3933 . . . . . 6  |-  ( w  =  z  ->  ( B  <  w  <->  B  <  z ) )
1110notbid 656 . . . . 5  |-  ( w  =  z  ->  ( -.  B  <  w  <->  -.  B  <  z ) )
1211cbvralv 2654 . . . 4  |-  ( A. w  e.  A  -.  B  <  w  <->  A. z  e.  A  -.  B  <  z )
139, 12syl6bbr 197 . . 3  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. w  e.  A  -.  B  <  w ) )
147sselda 3097 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  RR )
155adantr 274 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  B  e.  RR )
1614, 15lenltd 7880 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
w  <_  B  <->  -.  B  <  w ) )
1716ralbidva 2433 . . 3  |-  ( ph  ->  ( A. w  e.  A  w  <_  B  <->  A. w  e.  A  -.  B  <  w ) )
1813, 17bitr4d 190 . 2  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. w  e.  A  w  <_  B ) )
19 breq1 3932 . . 3  |-  ( w  =  z  ->  (
w  <_  B  <->  z  <_  B ) )
2019cbvralv 2654 . 2  |-  ( A. w  e.  A  w  <_  B  <->  A. z  e.  A  z  <_  B )
2118, 20syl6bb 195 1  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. z  e.  A  z  <_  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   class class class wbr 3929   supcsup 6869   RRcr 7619    < clt 7800    <_ cle 7801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-po 4218  df-iso 4219  df-xp 4545  df-cnv 4547  df-iota 5088  df-riota 5730  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806
This theorem is referenced by:  suprzclex  9149  suplociccex  12772
  Copyright terms: Public domain W3C validator