ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplociccex Unicode version

Theorem suplociccex 12772
Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7837 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
Hypotheses
Ref Expression
suplocicc.1  |-  ( ph  ->  B  e.  RR )
suplocicc.2  |-  ( ph  ->  C  e.  RR )
suplocicc.bc  |-  ( ph  ->  B  <  C )
suplocicc.3  |-  ( ph  ->  A  C_  ( B [,] C ) )
suplocicc.m  |-  ( ph  ->  E. x  x  e.  A )
suplocicc.l  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )
Assertion
Ref Expression
suplociccex  |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    ph, x, y, z

Proof of Theorem suplociccex
Dummy variables  f  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocicc.1 . . 3  |-  ( ph  ->  B  e.  RR )
2 suplocicc.2 . . 3  |-  ( ph  ->  C  e.  RR )
3 suplocicc.bc . . 3  |-  ( ph  ->  B  <  C )
4 suplocicc.3 . . 3  |-  ( ph  ->  A  C_  ( B [,] C ) )
5 suplocicc.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
6 suplocicc.l . . 3  |-  ( ph  ->  A. x  e.  ( B [,] C ) A. y  e.  ( B [,] C ) ( x  <  y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y ) ) )
71, 2, 3, 4, 5, 6suplociccreex 12771 . 2  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
8 simprl 520 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  e.  RR )
9 eleq1w 2200 . . . . . . . 8  |-  ( x  =  u  ->  (
x  e.  A  <->  u  e.  A ) )
109cbvexv 1890 . . . . . . 7  |-  ( E. x  x  e.  A  <->  E. u  u  e.  A
)
115, 10sylib 121 . . . . . 6  |-  ( ph  ->  E. u  u  e.  A )
1211adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  E. u  u  e.  A )
131ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  e.  RR )
14 iccssre 9738 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B [,] C
)  C_  RR )
151, 2, 14syl2anc 408 . . . . . . . . 9  |-  ( ph  ->  ( B [,] C
)  C_  RR )
164, 15sstrd 3107 . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
1716ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A  C_  RR )
18 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  A )
1917, 18sseldd 3098 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  RR )
208adantr 274 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  x  e.  RR )
2113rexrd 7815 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  e.  RR* )
222rexrd 7815 . . . . . . . 8  |-  ( ph  ->  C  e.  RR* )
2322ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  C  e.  RR* )
244ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A  C_  ( B [,] C
) )
2524, 18sseldd 3098 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  e.  ( B [,] C
) )
26 iccgelb 9715 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  u  e.  ( B [,] C
) )  ->  B  <_  u )
2721, 23, 25, 26syl3anc 1216 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  <_  u )
28 breq2 3933 . . . . . . . . 9  |-  ( y  =  u  ->  (
x  <  y  <->  x  <  u ) )
2928notbid 656 . . . . . . . 8  |-  ( y  =  u  ->  ( -.  x  <  y  <->  -.  x  <  u ) )
30 simprrl 528 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  A  -.  x  <  y )
3130adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  A. y  e.  A  -.  x  <  y )
3229, 31, 18rspcdva 2794 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  -.  x  <  u )
3319, 20, 32nltled 7883 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  u  <_  x )
3413, 19, 20, 27, 33letrd 7886 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  /\  u  e.  A )  ->  B  <_  x )
3512, 34exlimddv 1870 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  B  <_  x )
36 simpl 108 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ph )
37 simprrr 529 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )
388, 30, 373jca 1161 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  RR  /\  A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
39 lttri3 7844 . . . . . . . 8  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4039adantl 275 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4140eqsupti 6883 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  /\  A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  x ) )
4236, 38, 41sylc 62 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  sup ( A ,  RR ,  <  )  =  x )
431rexrd 7815 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR* )
4443adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  B  e.  RR* )
4522adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  C  e.  RR* )
464sselda 3097 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  ( B [,] C
) )
47 iccleub 9714 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  z  e.  ( B [,] C
) )  ->  z  <_  C )
4844, 45, 46, 47syl3anc 1216 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  z  <_  C )
4948ralrimiva 2505 . . . . . . 7  |-  ( ph  ->  A. z  e.  A  z  <_  C )
507, 16, 2suprleubex 8712 . . . . . . 7  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  C  <->  A. z  e.  A  z  <_  C ) )
5149, 50mpbird 166 . . . . . 6  |-  ( ph  ->  sup ( A ,  RR ,  <  )  <_  C )
5251adantr 274 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  sup ( A ,  RR ,  <  )  <_  C )
5342, 52eqbrtrrd 3952 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  <_  C )
548, 35, 533jca 1161 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  RR  /\  B  <_  x  /\  x  <_  C ) )
55 elicc2 9721 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
561, 2, 55syl2anc 408 . . . 4  |-  ( ph  ->  ( x  e.  ( B [,] C )  <-> 
( x  e.  RR  /\  B  <_  x  /\  x  <_  C ) ) )
5756adantr 274 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  (
x  e.  ( B [,] C )  <->  ( x  e.  RR  /\  B  <_  x  /\  x  <_  C
) ) )
5854, 57mpbird 166 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  x  e.  ( B [,] C
) )
59 ssralv 3161 . . . . . 6  |-  ( ( B [,] C ) 
C_  RR  ->  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
6015, 59syl 14 . . . . 5  |-  ( ph  ->  ( A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
6160adantr 274 . . . 4  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  A  y  <  z )  ->  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
6237, 61mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) )
6330, 62jca 304 . 2  |-  ( (
ph  /\  ( x  e.  RR  /\  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )  ->  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  ( B [,] C ) ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
647, 58, 63reximssdv 2536 1  |-  ( ph  ->  E. x  e.  ( B [,] C ) ( A. y  e.  A  -.  x  < 
y  /\  A. y  e.  ( B [,] C
) ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331   E.wex 1468    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   class class class wbr 3929  (class class class)co 5774   supcsup 6869   RRcr 7619   RR*cxr 7799    < clt 7800    <_ cle 7801   [,]cicc 9674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-pre-suploc 7741
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-icc 9678  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  dedekindicclemlub  12776
  Copyright terms: Public domain W3C validator