ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unielxp Unicode version

Theorem unielxp 6072
Description: The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unielxp  |-  ( A  e.  ( B  X.  C )  ->  U. A  e.  U. ( B  X.  C ) )

Proof of Theorem unielxp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elxp7 6068 . 2  |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A
)  e.  C ) ) )
2 elvvuni 4603 . . . 4  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )
32adantr 274 . . 3  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  ->  U. A  e.  A
)
4 simprl 520 . . . . . 6  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  A  e.  ( _V  X.  _V )
)
5 eleq2 2203 . . . . . . . 8  |-  ( x  =  A  ->  ( U. A  e.  x  <->  U. A  e.  A ) )
6 eleq1 2202 . . . . . . . . 9  |-  ( x  =  A  ->  (
x  e.  ( _V 
X.  _V )  <->  A  e.  ( _V  X.  _V )
) )
7 fveq2 5421 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( 1st `  x )  =  ( 1st `  A
) )
87eleq1d 2208 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( 1st `  x
)  e.  B  <->  ( 1st `  A )  e.  B
) )
9 fveq2 5421 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( 2nd `  x )  =  ( 2nd `  A
) )
109eleq1d 2208 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( 2nd `  x
)  e.  C  <->  ( 2nd `  A )  e.  C
) )
118, 10anbi12d 464 . . . . . . . . 9  |-  ( x  =  A  ->  (
( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C )  <->  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C
) ) )
126, 11anbi12d 464 . . . . . . . 8  |-  ( x  =  A  ->  (
( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) )  <-> 
( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) ) )
135, 12anbi12d 464 . . . . . . 7  |-  ( x  =  A  ->  (
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) )  <->  ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) ) ) )
1413spcegv 2774 . . . . . 6  |-  ( A  e.  ( _V  X.  _V )  ->  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  E. x
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) ) ) )
154, 14mpcom 36 . . . . 5  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  E. x
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) ) )
16 eluniab 3748 . . . . 5  |-  ( U. A  e.  U. { x  |  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x )  e.  B  /\  ( 2nd `  x
)  e.  C ) ) }  <->  E. x
( U. A  e.  x  /\  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) ) )
1715, 16sylibr 133 . . . 4  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  U. A  e. 
U. { x  |  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) } )
18 xp2 6071 . . . . . 6  |-  ( B  X.  C )  =  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  B  /\  ( 2nd `  x
)  e.  C ) }
19 df-rab 2425 . . . . . 6  |-  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  B  /\  ( 2nd `  x )  e.  C
) }  =  {
x  |  ( x  e.  ( _V  X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) }
2018, 19eqtri 2160 . . . . 5  |-  ( B  X.  C )  =  { x  |  ( x  e.  ( _V 
X.  _V )  /\  (
( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) }
2120unieqi 3746 . . . 4  |-  U. ( B  X.  C )  = 
U. { x  |  ( x  e.  ( _V  X.  _V )  /\  ( ( 1st `  x
)  e.  B  /\  ( 2nd `  x )  e.  C ) ) }
2217, 21eleqtrrdi 2233 . . 3  |-  ( ( U. A  e.  A  /\  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) ) )  ->  U. A  e. 
U. ( B  X.  C ) )
233, 22mpancom 418 . 2  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  e.  B  /\  ( 2nd `  A )  e.  C ) )  ->  U. A  e.  U. ( B  X.  C
) )
241, 23sylbi 120 1  |-  ( A  e.  ( B  X.  C )  ->  U. A  e.  U. ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2125   {crab 2420   _Vcvv 2686   U.cuni 3736    X. cxp 4537   ` cfv 5123   1stc1st 6036   2ndc2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fo 5129  df-fv 5131  df-1st 6038  df-2nd 6039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator