![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cn | GIF version |
Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
0cn | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 7143 | . 2 ⊢ ((i · i) + 1) = 0 | |
2 | ax-icn 7133 | . . . 4 ⊢ i ∈ ℂ | |
3 | mulcl 7162 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
4 | 2, 2, 3 | mp2an 417 | . . 3 ⊢ (i · i) ∈ ℂ |
5 | ax-1cn 7131 | . . 3 ⊢ 1 ∈ ℂ | |
6 | addcl 7160 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
7 | 4, 5, 6 | mp2an 417 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
8 | 1, 7 | eqeltrri 2153 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 (class class class)co 5543 ℂcc 7041 0cc0 7043 1c1 7044 ici 7045 + caddc 7046 · cmul 7048 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 ax-1cn 7131 ax-icn 7133 ax-addcl 7134 ax-mulcl 7136 ax-i2m1 7143 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 |
This theorem is referenced by: 0cnd 7174 c0ex 7175 addid2 7314 00id 7316 cnegexlem2 7351 negcl 7375 subid 7394 subid1 7395 neg0 7421 negid 7422 negsub 7423 subneg 7424 negneg 7425 negeq0 7429 negsubdi 7431 renegcl 7436 mul02 7558 mul01 7560 mulneg1 7566 ixi 7750 negap0 7796 muleqadd 7825 divvalap 7829 div0ap 7857 recgt0 7995 0m0e0 8218 2muline0 8323 elznn0 8447 iser0 9568 0exp0e1 9578 expeq0 9604 0exp 9608 sq0 9663 ibcval5 9787 shftval3 9853 shftidt2 9858 cjap0 9932 cjne0 9933 abs0 10082 abs00 10088 abs2dif 10130 clim0 10262 climz 10269 iserclim0 10282 isumrblem 10337 fisumcvg 10338 |
Copyright terms: Public domain | W3C validator |