ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2zsupmax GIF version

Theorem 2zsupmax 10997
Description: Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
2zsupmax ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))

Proof of Theorem 2zsupmax
StepHypRef Expression
1 simpr 109 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → 𝐴𝐵)
2 zre 9058 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
32adantr 274 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
4 zre 9058 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
54adantl 275 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
65adantr 274 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
7 maxleb 10988 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
83, 6, 7syl2an2r 584 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → (𝐴𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
91, 8mpbid 146 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)
101iftrued 3481 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
119, 10eqtr4d 2175 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴𝐵) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))
12 maxcom 10975 . . . 4 sup({𝐵, 𝐴}, ℝ, < ) = sup({𝐴, 𝐵}, ℝ, < )
135adantr 274 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → 𝐵 ∈ ℝ)
143adantr 274 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → 𝐴 ∈ ℝ)
15 zltnle 9100 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
1615ancoms 266 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
1716biimpar 295 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → 𝐵 < 𝐴)
1813, 14, 17ltled 7881 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
19 maxleb 10988 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ sup({𝐵, 𝐴}, ℝ, < ) = 𝐴))
205, 14, 19syl2an2r 584 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → (𝐵𝐴 ↔ sup({𝐵, 𝐴}, ℝ, < ) = 𝐴))
2118, 20mpbid 146 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → sup({𝐵, 𝐴}, ℝ, < ) = 𝐴)
2212, 21syl5eqr 2186 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → sup({𝐴, 𝐵}, ℝ, < ) = 𝐴)
23 simpr 109 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
2423iffalsed 3484 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
2522, 24eqtr4d 2175 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴𝐵) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))
26 zdcle 9127 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
27 exmiddc 821 . . 3 (DECID 𝐴𝐵 → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
2826, 27syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ∨ ¬ 𝐴𝐵))
2911, 25, 28mpjaodan 787 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  ifcif 3474  {cpr 3528   class class class wbr 3929  supcsup 6869  cr 7619   < clt 7800  cle 7801  cz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator