ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-suploc GIF version

Theorem axpre-suploc 7710
Description: An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given 𝑥 < 𝑦, either there is an element of the set greater than 𝑥, or 𝑦 is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7741. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

Assertion
Ref Expression
axpre-suploc (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem axpre-suploc
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 519 . . 3 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 𝑥𝐴)
2 eleq1w 2200 . . . 4 (𝑥 = 𝑑 → (𝑥𝐴𝑑𝐴))
32cbvexv 1890 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑑 𝑑𝐴)
41, 3sylib 121 . 2 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑑 𝑑𝐴)
5 simplll 522 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → 𝐴 ⊆ ℝ)
6 simpr 109 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → 𝑑𝐴)
7 simplrl 524 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
8 breq2 3933 . . . . . . . 8 (𝑎 = 𝑥 → (𝑏 < 𝑎𝑏 < 𝑥))
98ralbidv 2437 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏𝐴 𝑏 < 𝑎 ↔ ∀𝑏𝐴 𝑏 < 𝑥))
109cbvrexv 2655 . . . . . 6 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑥)
11 breq1 3932 . . . . . . . 8 (𝑏 = 𝑦 → (𝑏 < 𝑥𝑦 < 𝑥))
1211cbvralv 2654 . . . . . . 7 (∀𝑏𝐴 𝑏 < 𝑥 ↔ ∀𝑦𝐴 𝑦 < 𝑥)
1312rexbii 2442 . . . . . 6 (∃𝑥 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
1410, 13bitri 183 . . . . 5 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
157, 14sylibr 133 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏 < 𝑎)
16 simplrr 525 . . . . 5 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
17 breq1 3932 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎 < 𝑏𝑥 < 𝑏))
18 breq1 3932 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎 < 𝑐𝑥 < 𝑐))
1918rexbidv 2438 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑐𝐴 𝑎 < 𝑐 ↔ ∃𝑐𝐴 𝑥 < 𝑐))
2019orbi1d 780 . . . . . . . 8 (𝑎 = 𝑥 → ((∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏) ↔ (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)))
2117, 20imbi12d 233 . . . . . . 7 (𝑎 = 𝑥 → ((𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ (𝑥 < 𝑏 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏))))
22 breq2 3933 . . . . . . . 8 (𝑏 = 𝑦 → (𝑥 < 𝑏𝑥 < 𝑦))
23 breq2 3933 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑐 < 𝑏𝑐 < 𝑦))
2423ralbidv 2437 . . . . . . . . 9 (𝑏 = 𝑦 → (∀𝑐𝐴 𝑐 < 𝑏 ↔ ∀𝑐𝐴 𝑐 < 𝑦))
2524orbi2d 779 . . . . . . . 8 (𝑏 = 𝑦 → ((∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏) ↔ (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)))
2622, 25imbi12d 233 . . . . . . 7 (𝑏 = 𝑦 → ((𝑥 < 𝑏 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦))))
2721, 26cbvral2v 2665 . . . . . 6 (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)))
28 breq2 3933 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑥 < 𝑐𝑥 < 𝑧))
2928cbvrexv 2655 . . . . . . . . 9 (∃𝑐𝐴 𝑥 < 𝑐 ↔ ∃𝑧𝐴 𝑥 < 𝑧)
30 breq1 3932 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 < 𝑦𝑧 < 𝑦))
3130cbvralv 2654 . . . . . . . . 9 (∀𝑐𝐴 𝑐 < 𝑦 ↔ ∀𝑧𝐴 𝑧 < 𝑦)
3229, 31orbi12i 753 . . . . . . . 8 ((∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦) ↔ (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))
3332imbi2i 225 . . . . . . 7 ((𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)) ↔ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
34332ralbii 2443 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑐𝐴 𝑥 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑦)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
3527, 34bitri 183 . . . . 5 (∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
3616, 35sylibr 133 . . . 4 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∀𝑎 ∈ ℝ ∀𝑏 ∈ ℝ (𝑎 < 𝑏 → (∃𝑐𝐴 𝑎 < 𝑐 ∨ ∀𝑐𝐴 𝑐 < 𝑏)))
37 eqid 2139 . . . 4 {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴} = {𝑤R ∣ ⟨𝑤, 0R⟩ ∈ 𝐴}
385, 6, 15, 36, 37axpre-suploclemres 7709 . . 3 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)))
3917notbid 656 . . . . . . . 8 (𝑎 = 𝑥 → (¬ 𝑎 < 𝑏 ↔ ¬ 𝑥 < 𝑏))
4039ralbidv 2437 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑥 < 𝑏))
418imbi1d 230 . . . . . . . 8 (𝑎 = 𝑥 → ((𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4241ralbidv 2437 . . . . . . 7 (𝑎 = 𝑥 → (∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4340, 42anbi12d 464 . . . . . 6 (𝑎 = 𝑥 → ((∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐))))
4443cbvrexv 2655 . . . . 5 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)))
4522notbid 656 . . . . . . . 8 (𝑏 = 𝑦 → (¬ 𝑥 < 𝑏 ↔ ¬ 𝑥 < 𝑦))
4645cbvralv 2654 . . . . . . 7 (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
47 breq1 3932 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑏 < 𝑐𝑦 < 𝑐))
4847rexbidv 2438 . . . . . . . . 9 (𝑏 = 𝑦 → (∃𝑐𝐴 𝑏 < 𝑐 ↔ ∃𝑐𝐴 𝑦 < 𝑐))
4911, 48imbi12d 233 . . . . . . . 8 (𝑏 = 𝑦 → ((𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5049cbvralv 2654 . . . . . . 7 (∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐))
5146, 50anbi12i 455 . . . . . 6 ((∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5251rexbii 2442 . . . . 5 (∃𝑥 ∈ ℝ (∀𝑏𝐴 ¬ 𝑥 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑥 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
5344, 52bitri 183 . . . 4 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)))
54 breq2 3933 . . . . . . . . 9 (𝑐 = 𝑧 → (𝑦 < 𝑐𝑦 < 𝑧))
5554cbvrexv 2655 . . . . . . . 8 (∃𝑐𝐴 𝑦 < 𝑐 ↔ ∃𝑧𝐴 𝑦 < 𝑧)
5655imbi2i 225 . . . . . . 7 ((𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐) ↔ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
5756ralbii 2441 . . . . . 6 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
5857anbi2i 452 . . . . 5 ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
5958rexbii 2442 . . . 4 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑐𝐴 𝑦 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6053, 59bitri 183 . . 3 (∃𝑎 ∈ ℝ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ (𝑏 < 𝑎 → ∃𝑐𝐴 𝑏 < 𝑐)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6138, 60sylib 121 . 2 ((((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) ∧ 𝑑𝐴) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
624, 61exlimddv 1870 1 (((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697  wex 1468  wcel 1480  wral 2416  wrex 2417  {crab 2420  wss 3071  cop 3530   class class class wbr 3929  Rcnr 7105  0Rc0r 7106  cr 7619   < cltrr 7624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-imp 7277  df-iltp 7278  df-enr 7534  df-nr 7535  df-plr 7536  df-mr 7537  df-ltr 7538  df-0r 7539  df-1r 7540  df-m1r 7541  df-r 7630  df-lt 7633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator