ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvral2v GIF version

Theorem cbvral2v 2558
Description: Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
Hypotheses
Ref Expression
cbvral2v.1 (𝑥 = 𝑧 → (𝜑𝜒))
cbvral2v.2 (𝑦 = 𝑤 → (𝜒𝜓))
Assertion
Ref Expression
cbvral2v (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑧,𝐴   𝑥,𝑦,𝐵   𝑦,𝑧,𝐵   𝑤,𝐵   𝜑,𝑧   𝜓,𝑦   𝜒,𝑥   𝜒,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑥,𝑧,𝑤)   𝜒(𝑦,𝑧)   𝐴(𝑦,𝑤)

Proof of Theorem cbvral2v
StepHypRef Expression
1 cbvral2v.1 . . . 4 (𝑥 = 𝑧 → (𝜑𝜒))
21ralbidv 2343 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 𝜒))
32cbvralv 2550 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑦𝐵 𝜒)
4 cbvral2v.2 . . . 4 (𝑦 = 𝑤 → (𝜒𝜓))
54cbvralv 2550 . . 3 (∀𝑦𝐵 𝜒 ↔ ∀𝑤𝐵 𝜓)
65ralbii 2347 . 2 (∀𝑧𝐴𝑦𝐵 𝜒 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
73, 6bitri 177 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102  wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328
This theorem is referenced by:  cbvral3v  2560  fununi  4995  isoti  6411  cauappcvgprlemlim  6817  caucvgprlemnkj  6822  caucvgprlemcl  6832  caucvgprprlemcbv  6843  axcaucvglemcau  7030  iseqdistr  9414
  Copyright terms: Public domain W3C validator