ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezout GIF version

Theorem bezout 12154
Description: Bézout's identity: For any integers 𝐴 and 𝐵, there are integers 𝑥, 𝑦 such that (𝐴 gcd 𝐵) = 𝐴 · 𝑥 + 𝐵 · 𝑦. This is Metamath 100 proof #60.

The proof is constructive, in the sense that it applies the Extended Euclidian Algorithm to constuct a number which can be shown to be (𝐴 gcd 𝐵) and which satisfies the rest of the theorem. In the presence of excluded middle, it is common to prove Bézout's identity by taking the smallest number which satisfies the Bézout condition, and showing it is the greatest common divisor. But we do not have the ability to show that number exists other than by providing a way to determine it. (Contributed by Mario Carneiro, 22-Feb-2014.)

Assertion
Ref Expression
bezout ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem bezout
Dummy variables 𝑑 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlembi 12148 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2 simprrr 540 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3 nfv 1542 . . . . 5 𝑥(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)
4 nfv 1542 . . . . . 6 𝑥 𝑑 ∈ ℕ0
5 nfv 1542 . . . . . . 7 𝑥𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))
6 nfre1 2540 . . . . . . 7 𝑥𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))
75, 6nfan 1579 . . . . . 6 𝑥(∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
84, 7nfan 1579 . . . . 5 𝑥(𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
93, 8nfan 1579 . . . 4 𝑥((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
10 nfv 1542 . . . . . 6 𝑦(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)
11 nfv 1542 . . . . . . 7 𝑦 𝑑 ∈ ℕ0
12 nfv 1542 . . . . . . . 8 𝑦𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))
13 nfcv 2339 . . . . . . . . 9 𝑦
14 nfre1 2540 . . . . . . . . 9 𝑦𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))
1513, 14nfrexya 2538 . . . . . . . 8 𝑦𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))
1612, 15nfan 1579 . . . . . . 7 𝑦(∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
1711, 16nfan 1579 . . . . . 6 𝑦(𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
1810, 17nfan 1579 . . . . 5 𝑦((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
19 dfgcd3 12153 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝑤 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑤 ↔ (𝑧𝐴𝑧𝐵))))
2019adantr 276 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (𝐴 gcd 𝐵) = (𝑤 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑤 ↔ (𝑧𝐴𝑧𝐵))))
21 simprrl 539 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
22 simprl 529 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → 𝑑 ∈ ℕ0)
23 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → 𝐴 ∈ ℤ)
24 simplr 528 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → 𝐵 ∈ ℤ)
2523, 24, 22, 21bezoutlemeu 12150 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → ∃!𝑤 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑤 ↔ (𝑧𝐴𝑧𝐵)))
26 breq2 4037 . . . . . . . . . . . 12 (𝑤 = 𝑑 → (𝑧𝑤𝑧𝑑))
2726bibi1d 233 . . . . . . . . . . 11 (𝑤 = 𝑑 → ((𝑧𝑤 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2827ralbidv 2497 . . . . . . . . . 10 (𝑤 = 𝑑 → (∀𝑧 ∈ ℤ (𝑧𝑤 ↔ (𝑧𝐴𝑧𝐵)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵))))
2928riota2 5900 . . . . . . . . 9 ((𝑑 ∈ ℕ0 ∧ ∃!𝑤 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑤 ↔ (𝑧𝐴𝑧𝐵))) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑤 ↔ (𝑧𝐴𝑧𝐵))) = 𝑑))
3022, 25, 29syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑤 ↔ (𝑧𝐴𝑧𝐵))) = 𝑑))
3121, 30mpbid 147 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (𝑤 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑤 ↔ (𝑧𝐴𝑧𝐵))) = 𝑑)
3220, 31eqtrd 2229 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (𝐴 gcd 𝐵) = 𝑑)
3332eqeq1d 2205 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3418, 33rexbid 2496 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
359, 34rexbid 2496 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
362, 35mpbird 167 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑑 ∈ ℕ0 ∧ (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
371, 36rexlimddv 2619 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  ∃!wreu 2477   class class class wbr 4033  crio 5876  (class class class)co 5922   + caddc 7880   · cmul 7882  0cn0 9246  cz 9323  cdvds 11936   gcd cgcd 12085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7048  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-fz 10081  df-fzo 10215  df-fl 10345  df-mod 10400  df-seqfrec 10525  df-exp 10616  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-dvds 11937  df-gcd 12086
This theorem is referenced by:  dvdsgcd  12155  dvdsmulgcd  12168  lcmgcdlem  12221  divgcdcoprm0  12245  znunit  14191
  Copyright terms: Public domain W3C validator