ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caseinr GIF version

Theorem caseinr 6977
Description: Applying the "case" construction to a right injection. (Contributed by Jim Kingdon, 12-Jul-2023.)
Hypotheses
Ref Expression
caseinr.f (𝜑 → Fun 𝐹)
caseinr.g (𝜑𝐺 Fn 𝐵)
caseinr.a (𝜑𝐴𝐵)
Assertion
Ref Expression
caseinr (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))

Proof of Theorem caseinr
StepHypRef Expression
1 df-case 6969 . . . 4 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
21fveq1i 5422 . . 3 (case(𝐹, 𝐺)‘(inr‘𝐴)) = (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴))
3 caseinr.f . . . . . 6 (𝜑 → Fun 𝐹)
4 djulf1o 6943 . . . . . . . 8 inl:V–1-1-onto→({∅} × V)
5 f1ocnv 5380 . . . . . . . 8 (inl:V–1-1-onto→({∅} × V) → inl:({∅} × V)–1-1-onto→V)
64, 5ax-mp 5 . . . . . . 7 inl:({∅} × V)–1-1-onto→V
7 f1ofun 5369 . . . . . . 7 (inl:({∅} × V)–1-1-onto→V → Fun inl)
86, 7ax-mp 5 . . . . . 6 Fun inl
9 funco 5163 . . . . . 6 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
103, 8, 9sylancl 409 . . . . 5 (𝜑 → Fun (𝐹inl))
11 dmco 5047 . . . . . . 7 dom (𝐹inl) = (inl “ dom 𝐹)
12 imacnvcnv 5003 . . . . . . 7 (inl “ dom 𝐹) = (inl “ dom 𝐹)
1311, 12eqtri 2160 . . . . . 6 dom (𝐹inl) = (inl “ dom 𝐹)
1413a1i 9 . . . . 5 (𝜑 → dom (𝐹inl) = (inl “ dom 𝐹))
15 df-fn 5126 . . . . 5 ((𝐹inl) Fn (inl “ dom 𝐹) ↔ (Fun (𝐹inl) ∧ dom (𝐹inl) = (inl “ dom 𝐹)))
1610, 14, 15sylanbrc 413 . . . 4 (𝜑 → (𝐹inl) Fn (inl “ dom 𝐹))
17 caseinr.g . . . . . . 7 (𝜑𝐺 Fn 𝐵)
18 fnfun 5220 . . . . . . 7 (𝐺 Fn 𝐵 → Fun 𝐺)
1917, 18syl 14 . . . . . 6 (𝜑 → Fun 𝐺)
20 djurf1o 6944 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
21 f1ocnv 5380 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:({1o} × V)–1-1-onto→V)
2220, 21ax-mp 5 . . . . . . 7 inr:({1o} × V)–1-1-onto→V
23 f1ofun 5369 . . . . . . 7 (inr:({1o} × V)–1-1-onto→V → Fun inr)
2422, 23ax-mp 5 . . . . . 6 Fun inr
25 funco 5163 . . . . . 6 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
2619, 24, 25sylancl 409 . . . . 5 (𝜑 → Fun (𝐺inr))
27 dmco 5047 . . . . . 6 dom (𝐺inr) = (inr “ dom 𝐺)
28 df-inr 6933 . . . . . . . . . . 11 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
2928funmpt2 5162 . . . . . . . . . 10 Fun inr
30 funrel 5140 . . . . . . . . . 10 (Fun inr → Rel inr)
3129, 30ax-mp 5 . . . . . . . . 9 Rel inr
32 dfrel2 4989 . . . . . . . . 9 (Rel inr ↔ inr = inr)
3331, 32mpbi 144 . . . . . . . 8 inr = inr
3433a1i 9 . . . . . . 7 (𝜑inr = inr)
35 fndm 5222 . . . . . . . 8 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
3617, 35syl 14 . . . . . . 7 (𝜑 → dom 𝐺 = 𝐵)
3734, 36imaeq12d 4882 . . . . . 6 (𝜑 → (inr “ dom 𝐺) = (inr “ 𝐵))
3827, 37syl5eq 2184 . . . . 5 (𝜑 → dom (𝐺inr) = (inr “ 𝐵))
39 df-fn 5126 . . . . 5 ((𝐺inr) Fn (inr “ 𝐵) ↔ (Fun (𝐺inr) ∧ dom (𝐺inr) = (inr “ 𝐵)))
4026, 38, 39sylanbrc 413 . . . 4 (𝜑 → (𝐺inr) Fn (inr “ 𝐵))
41 djuin 6949 . . . . 5 ((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅
4241a1i 9 . . . 4 (𝜑 → ((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅)
43 caseinr.a . . . . . . . 8 (𝜑𝐴𝐵)
4443elexd 2699 . . . . . . 7 (𝜑𝐴 ∈ V)
45 f1odm 5371 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → dom inr = V)
4620, 45ax-mp 5 . . . . . . 7 dom inr = V
4744, 46eleqtrrdi 2233 . . . . . 6 (𝜑𝐴 ∈ dom inr)
4847, 29jctil 310 . . . . 5 (𝜑 → (Fun inr ∧ 𝐴 ∈ dom inr))
49 funfvima 5649 . . . . 5 ((Fun inr ∧ 𝐴 ∈ dom inr) → (𝐴𝐵 → (inr‘𝐴) ∈ (inr “ 𝐵)))
5048, 43, 49sylc 62 . . . 4 (𝜑 → (inr‘𝐴) ∈ (inr “ 𝐵))
51 fvun2 5488 . . . 4 (((𝐹inl) Fn (inl “ dom 𝐹) ∧ (𝐺inr) Fn (inr “ 𝐵) ∧ (((inl “ dom 𝐹) ∩ (inr “ 𝐵)) = ∅ ∧ (inr‘𝐴) ∈ (inr “ 𝐵))) → (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
5216, 40, 42, 50, 51syl112anc 1220 . . 3 (𝜑 → (((𝐹inl) ∪ (𝐺inr))‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
532, 52syl5eq 2184 . 2 (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = ((𝐺inr)‘(inr‘𝐴)))
54 f1ofn 5368 . . . 4 (inr:({1o} × V)–1-1-onto→V → inr Fn ({1o} × V))
5522, 54ax-mp 5 . . 3 inr Fn ({1o} × V)
56 f1of 5367 . . . . . 6 (inr:V–1-1-onto→({1o} × V) → inr:V⟶({1o} × V))
5720, 56ax-mp 5 . . . . 5 inr:V⟶({1o} × V)
5857a1i 9 . . . 4 (𝜑 → inr:V⟶({1o} × V))
5958, 44ffvelrnd 5556 . . 3 (𝜑 → (inr‘𝐴) ∈ ({1o} × V))
60 fvco2 5490 . . 3 ((inr Fn ({1o} × V) ∧ (inr‘𝐴) ∈ ({1o} × V)) → ((𝐺inr)‘(inr‘𝐴)) = (𝐺‘(inr‘(inr‘𝐴))))
6155, 59, 60sylancr 410 . 2 (𝜑 → ((𝐺inr)‘(inr‘𝐴)) = (𝐺‘(inr‘(inr‘𝐴))))
62 f1ocnvfv1 5678 . . . 4 ((inr:V–1-1-onto→({1o} × V) ∧ 𝐴 ∈ V) → (inr‘(inr‘𝐴)) = 𝐴)
6320, 44, 62sylancr 410 . . 3 (𝜑 → (inr‘(inr‘𝐴)) = 𝐴)
6463fveq2d 5425 . 2 (𝜑 → (𝐺‘(inr‘(inr‘𝐴))) = (𝐺𝐴))
6553, 61, 643eqtrd 2176 1 (𝜑 → (case(𝐹, 𝐺)‘(inr‘𝐴)) = (𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  Vcvv 2686  cun 3069  cin 3070  c0 3363  {csn 3527  cop 3530   × cxp 4537  ccnv 4538  dom cdm 4539  cima 4542  ccom 4543  Rel wrel 4544  Fun wfun 5117   Fn wfn 5118  wf 5119  1-1-ontowf1o 5122  cfv 5123  1oc1o 6306  inlcinl 6930  inrcinr 6931  casecdjucase 6968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-inl 6932  df-inr 6933  df-case 6969
This theorem is referenced by:  omp1eomlem  6979
  Copyright terms: Public domain W3C validator