ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  chfnrn GIF version

Theorem chfnrn 5531
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
chfnrn ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → ran 𝐹 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem chfnrn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 5469 . . . . 5 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
21biimpd 143 . . . 4 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
3 eleq1 2202 . . . . . . 7 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝑥𝑦𝑥))
43biimpcd 158 . . . . . 6 ((𝐹𝑥) ∈ 𝑥 → ((𝐹𝑥) = 𝑦𝑦𝑥))
54ralimi 2495 . . . . 5 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥 → ∀𝑥𝐴 ((𝐹𝑥) = 𝑦𝑦𝑥))
6 rexim 2526 . . . . 5 (∀𝑥𝐴 ((𝐹𝑥) = 𝑦𝑦𝑥) → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 𝑦𝑥))
75, 6syl 14 . . . 4 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥 → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 𝑦𝑥))
82, 7sylan9 406 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 𝑦𝑥))
9 eluni2 3740 . . 3 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
108, 9syl6ibr 161 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → (𝑦 ∈ ran 𝐹𝑦 𝐴))
1110ssrdv 3103 1 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥) → ran 𝐹 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071   cuni 3736  ran crn 4540   Fn wfn 5118  cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator