ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelrnb GIF version

Theorem fvelrnb 5248
Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
fvelrnb (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fvelrnb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-rex 2329 . . . 4 (∃𝑥𝐴 (𝐹𝑥) = 𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ (𝐹𝑥) = 𝐵))
2 19.41v 1798 . . . . 5 (∃𝑥((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) ↔ (∃𝑥(𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴))
3 simpl 106 . . . . . . . . . 10 ((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) → 𝑥𝐴)
43anim1i 327 . . . . . . . . 9 (((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝑥𝐴𝐹 Fn 𝐴))
54ancomd 258 . . . . . . . 8 (((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝐹 Fn 𝐴𝑥𝐴))
6 funfvex 5219 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
76funfni 5026 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
85, 7syl 14 . . . . . . 7 (((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → (𝐹𝑥) ∈ V)
9 simpr 107 . . . . . . . . 9 ((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) → (𝐹𝑥) = 𝐵)
109eleq1d 2122 . . . . . . . 8 ((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) → ((𝐹𝑥) ∈ V ↔ 𝐵 ∈ V))
1110adantr 265 . . . . . . 7 (((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → ((𝐹𝑥) ∈ V ↔ 𝐵 ∈ V))
128, 11mpbid 139 . . . . . 6 (((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → 𝐵 ∈ V)
1312exlimiv 1505 . . . . 5 (∃𝑥((𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → 𝐵 ∈ V)
142, 13sylbir 129 . . . 4 ((∃𝑥(𝑥𝐴 ∧ (𝐹𝑥) = 𝐵) ∧ 𝐹 Fn 𝐴) → 𝐵 ∈ V)
151, 14sylanb 272 . . 3 ((∃𝑥𝐴 (𝐹𝑥) = 𝐵𝐹 Fn 𝐴) → 𝐵 ∈ V)
1615expcom 113 . 2 (𝐹 Fn 𝐴 → (∃𝑥𝐴 (𝐹𝑥) = 𝐵𝐵 ∈ V))
17 fnrnfv 5247 . . . 4 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
1817eleq2d 2123 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}))
19 eqeq1 2062 . . . . . 6 (𝑦 = 𝐵 → (𝑦 = (𝐹𝑥) ↔ 𝐵 = (𝐹𝑥)))
20 eqcom 2058 . . . . . 6 (𝐵 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝐵)
2119, 20syl6bb 189 . . . . 5 (𝑦 = 𝐵 → (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝐵))
2221rexbidv 2344 . . . 4 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
2322elab3g 2715 . . 3 ((∃𝑥𝐴 (𝐹𝑥) = 𝐵𝐵 ∈ V) → (𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)} ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
2418, 23sylan9bbr 444 . 2 (((∃𝑥𝐴 (𝐹𝑥) = 𝐵𝐵 ∈ V) ∧ 𝐹 Fn 𝐴) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
2516, 24mpancom 407 1 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wex 1397  wcel 1409  {cab 2042  wrex 2324  Vcvv 2574  ran crn 4373   Fn wfn 4924  cfv 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-iota 4894  df-fun 4931  df-fn 4932  df-fv 4937
This theorem is referenced by:  chfnrn  5305  rexrn  5331  ralrn  5332  elrnrexdmb  5334  ffnfv  5350  fconstfvm  5406  elunirn  5432  isoini  5484  reldm  5839  ordiso2  6414  uzn0  8583  frec2uzrand  9349  frecuzrdgfn  9356  uzin2  9807
  Copyright terms: Public domain W3C validator