ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt11 GIF version

Theorem cnmpt11 12452
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt11.b (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))
cnmpt11.c (𝑦 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt11 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑥   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝐵   𝑦,𝐶
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem cnmpt11
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥𝑋)
2 cnmptid.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 cnmpt11.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cnmpt11.a . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
5 cnf2 12374 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋𝑌)
62, 3, 4, 5syl3anc 1216 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
7 eqid 2139 . . . . . . . . . . . 12 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
87fmpt 5570 . . . . . . . . . . 11 (∀𝑥𝑋 𝐴𝑌 ↔ (𝑥𝑋𝐴):𝑋𝑌)
96, 8sylibr 133 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 𝐴𝑌)
109r19.21bi 2520 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐴𝑌)
117fvmpt2 5504 . . . . . . . . 9 ((𝑥𝑋𝐴𝑌) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
121, 10, 11syl2anc 408 . . . . . . . 8 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
1312fveq2d 5425 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)) = ((𝑦𝑌𝐵)‘𝐴))
14 eqid 2139 . . . . . . . 8 (𝑦𝑌𝐵) = (𝑦𝑌𝐵)
15 cnmpt11.c . . . . . . . 8 (𝑦 = 𝐴𝐵 = 𝐶)
1615eleq1d 2208 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐵 𝐿𝐶 𝐿))
17 cnmpt11.b . . . . . . . . . . . . . 14 (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))
18 cntop2 12371 . . . . . . . . . . . . . 14 ((𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿) → 𝐿 ∈ Top)
1917, 18syl 14 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ Top)
20 eqid 2139 . . . . . . . . . . . . . 14 𝐿 = 𝐿
2120toptopon 12185 . . . . . . . . . . . . 13 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
2219, 21sylib 121 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
23 cnf2 12374 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐵):𝑌 𝐿)
243, 22, 17, 23syl3anc 1216 . . . . . . . . . . 11 (𝜑 → (𝑦𝑌𝐵):𝑌 𝐿)
2514fmpt 5570 . . . . . . . . . . 11 (∀𝑦𝑌 𝐵 𝐿 ↔ (𝑦𝑌𝐵):𝑌 𝐿)
2624, 25sylibr 133 . . . . . . . . . 10 (𝜑 → ∀𝑦𝑌 𝐵 𝐿)
2726adantr 274 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 𝐿)
2816, 27, 10rspcdva 2794 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐶 𝐿)
2914, 15, 10, 28fvmptd3 5514 . . . . . . 7 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘𝐴) = 𝐶)
3013, 29eqtrd 2172 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)) = 𝐶)
31 fvco3 5492 . . . . . . 7 (((𝑥𝑋𝐴):𝑋𝑌𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)))
326, 31sylan 281 . . . . . 6 ((𝜑𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑦𝑌𝐵)‘((𝑥𝑋𝐴)‘𝑥)))
33 eqid 2139 . . . . . . . 8 (𝑥𝑋𝐶) = (𝑥𝑋𝐶)
3433fvmpt2 5504 . . . . . . 7 ((𝑥𝑋𝐶 𝐿) → ((𝑥𝑋𝐶)‘𝑥) = 𝐶)
351, 28, 34syl2anc 408 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐶)‘𝑥) = 𝐶)
3630, 32, 353eqtr4d 2182 . . . . 5 ((𝜑𝑥𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥))
3736ralrimiva 2505 . . . 4 (𝜑 → ∀𝑥𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥))
38 nfv 1508 . . . . 5 𝑧(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥)
39 nfcv 2281 . . . . . . . 8 𝑥(𝑦𝑌𝐵)
40 nfmpt1 4021 . . . . . . . 8 𝑥(𝑥𝑋𝐴)
4139, 40nfco 4704 . . . . . . 7 𝑥((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))
42 nfcv 2281 . . . . . . 7 𝑥𝑧
4341, 42nffv 5431 . . . . . 6 𝑥(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧)
44 nfmpt1 4021 . . . . . . 7 𝑥(𝑥𝑋𝐶)
4544, 42nffv 5431 . . . . . 6 𝑥((𝑥𝑋𝐶)‘𝑧)
4643, 45nfeq 2289 . . . . 5 𝑥(((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)
47 fveq2 5421 . . . . . 6 (𝑥 = 𝑧 → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧))
48 fveq2 5421 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝑋𝐶)‘𝑥) = ((𝑥𝑋𝐶)‘𝑧))
4947, 48eqeq12d 2154 . . . . 5 (𝑥 = 𝑧 → ((((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥) ↔ (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5038, 46, 49cbvral 2650 . . . 4 (∀𝑥𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑥) = ((𝑥𝑋𝐶)‘𝑥) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧))
5137, 50sylib 121 . . 3 (𝜑 → ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧))
52 fco 5288 . . . . . 6 (((𝑦𝑌𝐵):𝑌 𝐿 ∧ (𝑥𝑋𝐴):𝑋𝑌) → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿)
5324, 6, 52syl2anc 408 . . . . 5 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)):𝑋 𝐿)
5453ffnd 5273 . . . 4 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋)
5528fmpttd 5575 . . . . 5 (𝜑 → (𝑥𝑋𝐶):𝑋 𝐿)
5655ffnd 5273 . . . 4 (𝜑 → (𝑥𝑋𝐶) Fn 𝑋)
57 eqfnfv 5518 . . . 4 ((((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) Fn 𝑋 ∧ (𝑥𝑋𝐶) Fn 𝑋) → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5854, 56, 57syl2anc 408 . . 3 (𝜑 → (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶) ↔ ∀𝑧𝑋 (((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴))‘𝑧) = ((𝑥𝑋𝐶)‘𝑧)))
5951, 58mpbird 166 . 2 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
60 cnco 12390 . . 3 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿)) → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) ∈ (𝐽 Cn 𝐿))
614, 17, 60syl2anc 408 . 2 (𝜑 → ((𝑦𝑌𝐵) ∘ (𝑥𝑋𝐴)) ∈ (𝐽 Cn 𝐿))
6259, 61eqeltrrd 2217 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416   cuni 3736  cmpt 3989  ccom 4543   Fn wfn 5118  wf 5119  cfv 5123  (class class class)co 5774  Topctop 12164  TopOnctopon 12177   Cn ccn 12354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12165  df-topon 12178  df-cn 12357
This theorem is referenced by:  cnmpt11f  12453
  Copyright terms: Public domain W3C validator