ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprmgcdb GIF version

Theorem coprmgcdb 10677
Description: Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
coprmgcdb ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖

Proof of Theorem coprmgcdb
StepHypRef Expression
1 nnz 8503 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
2 nnz 8503 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
3 gcddvds 10562 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
41, 2, 3syl2an 283 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
5 simpr 108 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
6 gcdnncl 10566 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
76adantr 270 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ)
8 breq1 3808 . . . . . . . 8 (𝑖 = (𝐴 gcd 𝐵) → (𝑖𝐴 ↔ (𝐴 gcd 𝐵) ∥ 𝐴))
9 breq1 3808 . . . . . . . 8 (𝑖 = (𝐴 gcd 𝐵) → (𝑖𝐵 ↔ (𝐴 gcd 𝐵) ∥ 𝐵))
108, 9anbi12d 457 . . . . . . 7 (𝑖 = (𝐴 gcd 𝐵) → ((𝑖𝐴𝑖𝐵) ↔ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)))
11 eqeq1 2089 . . . . . . 7 (𝑖 = (𝐴 gcd 𝐵) → (𝑖 = 1 ↔ (𝐴 gcd 𝐵) = 1))
1210, 11imbi12d 232 . . . . . 6 (𝑖 = (𝐴 gcd 𝐵) → (((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1)))
1312rspcv 2706 . . . . 5 ((𝐴 gcd 𝐵) ∈ ℕ → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1)))
147, 13syl 14 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1)))
155, 14mpid 41 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → (𝐴 gcd 𝐵) = 1))
164, 15mpdan 412 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) → (𝐴 gcd 𝐵) = 1))
17 simpl 107 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ))
1817anim1i 333 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑖 ∈ ℕ))
1918ancomd 263 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ)))
20 3anass 924 . . . . . . 7 ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ↔ (𝑖 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ)))
2119, 20sylibr 132 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ))
22 nndvdslegcd 10564 . . . . . 6 ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖𝐴𝑖𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵)))
2321, 22syl 14 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵)))
24 breq2 3809 . . . . . . . 8 ((𝐴 gcd 𝐵) = 1 → (𝑖 ≤ (𝐴 gcd 𝐵) ↔ 𝑖 ≤ 1))
2524adantr 270 . . . . . . 7 (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) ↔ 𝑖 ≤ 1))
26 nnge1 8181 . . . . . . . . 9 (𝑖 ∈ ℕ → 1 ≤ 𝑖)
27 nnre 8165 . . . . . . . . . . 11 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ)
28 1red 7248 . . . . . . . . . . 11 (𝑖 ∈ ℕ → 1 ∈ ℝ)
2927, 28letri3d 7345 . . . . . . . . . 10 (𝑖 ∈ ℕ → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖)))
3029biimprd 156 . . . . . . . . 9 (𝑖 ∈ ℕ → ((𝑖 ≤ 1 ∧ 1 ≤ 𝑖) → 𝑖 = 1))
3126, 30mpan2d 419 . . . . . . . 8 (𝑖 ∈ ℕ → (𝑖 ≤ 1 → 𝑖 = 1))
3231adantl 271 . . . . . . 7 (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ 1 → 𝑖 = 1))
3325, 32sylbid 148 . . . . . 6 (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) → 𝑖 = 1))
3433adantll 460 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) → 𝑖 = 1))
3523, 34syld 44 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
3635ralrimiva 2439 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
3736ex 113 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
3816, 37impbid 127 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  wral 2353   class class class wbr 3805  (class class class)co 5563  1c1 7096  cle 7268  cn 8158  cz 8484  cdvds 10403   gcd cgcd 10545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209  ax-caucvg 7210
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-sup 6491  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-3 8218  df-4 8219  df-n0 8408  df-z 8485  df-uz 8753  df-q 8838  df-rp 8868  df-fz 9158  df-fzo 9282  df-fl 9404  df-mod 9457  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086  df-dvds 10404  df-gcd 10546
This theorem is referenced by:  coprmdvds1  10680
  Copyright terms: Public domain W3C validator