![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6lcm4e12 | GIF version |
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
6lcm4e12 | ⊢ (6 lcm 4) = ;12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6cn 8240 | . . . 4 ⊢ 6 ∈ ℂ | |
2 | 4cn 8236 | . . . 4 ⊢ 4 ∈ ℂ | |
3 | 1, 2 | mulcli 7238 | . . 3 ⊢ (6 · 4) ∈ ℂ |
4 | 6nn0 8428 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
5 | 4 | nn0zi 8506 | . . . 4 ⊢ 6 ∈ ℤ |
6 | 4z 8514 | . . . 4 ⊢ 4 ∈ ℤ | |
7 | lcmcl 10661 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℕ0) | |
8 | 7 | nn0cnd 8462 | . . . 4 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 lcm 4) ∈ ℂ) |
9 | 5, 6, 8 | mp2an 417 | . . 3 ⊢ (6 lcm 4) ∈ ℂ |
10 | gcdcl 10565 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℕ0) | |
11 | 10 | nn0cnd 8462 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) ∈ ℂ) |
12 | 5, 6, 11 | mp2an 417 | . . . 4 ⊢ (6 gcd 4) ∈ ℂ |
13 | 5, 6 | pm3.2i 266 | . . . . . . 7 ⊢ (6 ∈ ℤ ∧ 4 ∈ ℤ) |
14 | 4ne0 8256 | . . . . . . . . 9 ⊢ 4 ≠ 0 | |
15 | 14 | neii 2251 | . . . . . . . 8 ⊢ ¬ 4 = 0 |
16 | 15 | intnan 872 | . . . . . . 7 ⊢ ¬ (6 = 0 ∧ 4 = 0) |
17 | gcdn0cl 10561 | . . . . . . 7 ⊢ (((6 ∈ ℤ ∧ 4 ∈ ℤ) ∧ ¬ (6 = 0 ∧ 4 = 0)) → (6 gcd 4) ∈ ℕ) | |
18 | 13, 16, 17 | mp2an 417 | . . . . . 6 ⊢ (6 gcd 4) ∈ ℕ |
19 | 18 | nnne0i 8189 | . . . . 5 ⊢ (6 gcd 4) ≠ 0 |
20 | 18 | nnzi 8505 | . . . . . 6 ⊢ (6 gcd 4) ∈ ℤ |
21 | 0z 8495 | . . . . . 6 ⊢ 0 ∈ ℤ | |
22 | zapne 8555 | . . . . . 6 ⊢ (((6 gcd 4) ∈ ℤ ∧ 0 ∈ ℤ) → ((6 gcd 4) # 0 ↔ (6 gcd 4) ≠ 0)) | |
23 | 20, 21, 22 | mp2an 417 | . . . . 5 ⊢ ((6 gcd 4) # 0 ↔ (6 gcd 4) ≠ 0) |
24 | 19, 23 | mpbir 144 | . . . 4 ⊢ (6 gcd 4) # 0 |
25 | 12, 24 | pm3.2i 266 | . . 3 ⊢ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0) |
26 | 6nn 8316 | . . . . . . . 8 ⊢ 6 ∈ ℕ | |
27 | 4nn 8314 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
28 | 26, 27 | pm3.2i 266 | . . . . . . 7 ⊢ (6 ∈ ℕ ∧ 4 ∈ ℕ) |
29 | lcmgcdnn 10671 | . . . . . . 7 ⊢ ((6 ∈ ℕ ∧ 4 ∈ ℕ) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) | |
30 | 28, 29 | mp1i 10 | . . . . . 6 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → ((6 lcm 4) · (6 gcd 4)) = (6 · 4)) |
31 | 30 | eqcomd 2088 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (6 · 4) = ((6 lcm 4) · (6 gcd 4))) |
32 | divmulap3 7884 | . . . . 5 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (((6 · 4) / (6 gcd 4)) = (6 lcm 4) ↔ (6 · 4) = ((6 lcm 4) · (6 gcd 4)))) | |
33 | 31, 32 | mpbird 165 | . . . 4 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → ((6 · 4) / (6 gcd 4)) = (6 lcm 4)) |
34 | 33 | eqcomd 2088 | . . 3 ⊢ (((6 · 4) ∈ ℂ ∧ (6 lcm 4) ∈ ℂ ∧ ((6 gcd 4) ∈ ℂ ∧ (6 gcd 4) # 0)) → (6 lcm 4) = ((6 · 4) / (6 gcd 4))) |
35 | 3, 9, 25, 34 | mp3an 1269 | . 2 ⊢ (6 lcm 4) = ((6 · 4) / (6 gcd 4)) |
36 | 6gcd4e2 10591 | . . 3 ⊢ (6 gcd 4) = 2 | |
37 | 36 | oveq2i 5574 | . 2 ⊢ ((6 · 4) / (6 gcd 4)) = ((6 · 4) / 2) |
38 | 2cn 8229 | . . . 4 ⊢ 2 ∈ ℂ | |
39 | 2ap0 8251 | . . . 4 ⊢ 2 # 0 | |
40 | 1, 2, 38, 39 | divassapi 7975 | . . 3 ⊢ ((6 · 4) / 2) = (6 · (4 / 2)) |
41 | 4d2e2 8311 | . . . 4 ⊢ (4 / 2) = 2 | |
42 | 41 | oveq2i 5574 | . . 3 ⊢ (6 · (4 / 2)) = (6 · 2) |
43 | 6t2e12 8713 | . . 3 ⊢ (6 · 2) = ;12 | |
44 | 40, 42, 43 | 3eqtri 2107 | . 2 ⊢ ((6 · 4) / 2) = ;12 |
45 | 35, 37, 44 | 3eqtri 2107 | 1 ⊢ (6 lcm 4) = ;12 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ≠ wne 2249 class class class wbr 3805 (class class class)co 5563 ℂcc 7093 0cc0 7095 1c1 7096 · cmul 7100 # cap 7800 / cdiv 7879 ℕcn 8158 2c2 8208 4c4 8210 6c6 8212 ℤcz 8484 ;cdc 8610 gcd cgcd 10545 lcm clcm 10649 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-iinf 4357 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-mulrcl 7189 ax-addcom 7190 ax-mulcom 7191 ax-addass 7192 ax-mulass 7193 ax-distr 7194 ax-i2m1 7195 ax-0lt1 7196 ax-1rid 7197 ax-0id 7198 ax-rnegex 7199 ax-precex 7200 ax-cnre 7201 ax-pre-ltirr 7202 ax-pre-ltwlin 7203 ax-pre-lttrn 7204 ax-pre-apti 7205 ax-pre-ltadd 7206 ax-pre-mulgt0 7207 ax-pre-mulext 7208 ax-arch 7209 ax-caucvg 7210 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-if 3369 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-po 4079 df-iso 4080 df-iord 4149 df-on 4151 df-ilim 4152 df-suc 4154 df-iom 4360 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-isom 4961 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-1st 5818 df-2nd 5819 df-recs 5974 df-frec 6060 df-sup 6491 df-inf 6492 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 df-sub 7400 df-neg 7401 df-reap 7794 df-ap 7801 df-div 7880 df-inn 8159 df-2 8217 df-3 8218 df-4 8219 df-5 8220 df-6 8221 df-7 8222 df-8 8223 df-9 8224 df-n0 8408 df-z 8485 df-dec 8611 df-uz 8753 df-q 8838 df-rp 8868 df-fz 9158 df-fzo 9282 df-fl 9404 df-mod 9457 df-iseq 9574 df-iexp 9625 df-cj 9930 df-re 9931 df-im 9932 df-rsqrt 10085 df-abs 10086 df-dvds 10404 df-gcd 10546 df-lcm 10650 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |