ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decma GIF version

Theorem decma 8678
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a 𝐴 ∈ ℕ0
decma.b 𝐵 ∈ ℕ0
decma.c 𝐶 ∈ ℕ0
decma.d 𝐷 ∈ ℕ0
decma.m 𝑀 = 𝐴𝐵
decma.n 𝑁 = 𝐶𝐷
decma.p 𝑃 ∈ ℕ0
decma.e ((𝐴 · 𝑃) + 𝐶) = 𝐸
decma.f ((𝐵 · 𝑃) + 𝐷) = 𝐹
Assertion
Ref Expression
decma ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Proof of Theorem decma
StepHypRef Expression
1 10nn0 8645 . . 3 10 ∈ ℕ0
2 decma.a . . 3 𝐴 ∈ ℕ0
3 decma.b . . 3 𝐵 ∈ ℕ0
4 decma.c . . 3 𝐶 ∈ ℕ0
5 decma.d . . 3 𝐷 ∈ ℕ0
6 decma.m . . . 4 𝑀 = 𝐴𝐵
7 dfdec10 8631 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
86, 7eqtri 2103 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
9 decma.n . . . 4 𝑁 = 𝐶𝐷
10 dfdec10 8631 . . . 4 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
119, 10eqtri 2103 . . 3 𝑁 = ((10 · 𝐶) + 𝐷)
12 decma.p . . 3 𝑃 ∈ ℕ0
13 decma.e . . 3 ((𝐴 · 𝑃) + 𝐶) = 𝐸
14 decma.f . . 3 ((𝐵 · 𝑃) + 𝐷) = 𝐹
151, 2, 3, 4, 5, 8, 11, 12, 13, 14numma 8671 . 2 ((𝑀 · 𝑃) + 𝑁) = ((10 · 𝐸) + 𝐹)
16 dfdec10 8631 . 2 𝐸𝐹 = ((10 · 𝐸) + 𝐹)
1715, 16eqtr4i 2106 1 ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
Colors of variables: wff set class
Syntax hints:   = wceq 1285  wcel 1434  (class class class)co 5564  0cc0 7113  1c1 7114   + caddc 7116   · cmul 7118  0cn0 8425  cdc 8628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-setind 4308  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-addcom 7208  ax-mulcom 7209  ax-addass 7210  ax-mulass 7211  ax-distr 7212  ax-i2m1 7213  ax-1rid 7215  ax-0id 7216  ax-rnegex 7217  ax-cnre 7219
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-sub 7418  df-inn 8177  df-2 8235  df-3 8236  df-4 8237  df-5 8238  df-6 8239  df-7 8240  df-8 8241  df-9 8242  df-n0 8426  df-dec 8629
This theorem is referenced by:  decrmanc  8684
  Copyright terms: Public domain W3C validator