![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > disjx0 | GIF version |
Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjx0 | ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3289 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | disjxsn 3791 | . 2 ⊢ Disj 𝑥 ∈ {∅}𝐵 | |
3 | disjss1 3780 | . 2 ⊢ (∅ ⊆ {∅} → (Disj 𝑥 ∈ {∅}𝐵 → Disj 𝑥 ∈ ∅ 𝐵)) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 2974 ∅c0 3258 {csn 3406 Disj wdisj 3774 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rmo 2357 df-v 2604 df-dif 2976 df-in 2980 df-ss 2987 df-nul 3259 df-sn 3412 df-disj 3775 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |