ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqbreq2 GIF version

Theorem enqbreq2 7168
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
enqbreq2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))

Proof of Theorem enqbreq2
StepHypRef Expression
1 1st2nd2 6073 . . 3 (𝐴 ∈ (N × N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 1st2nd2 6073 . . 3 (𝐵 ∈ (N × N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
31, 2breqan12d 3945 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩))
4 xp1st 6063 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
5 xp2nd 6064 . . . 4 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
64, 5jca 304 . . 3 (𝐴 ∈ (N × N) → ((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N))
7 xp1st 6063 . . . 4 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
8 xp2nd 6064 . . . 4 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
97, 8jca 304 . . 3 (𝐵 ∈ (N × N) → ((1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N))
10 enqbreq 7167 . . 3 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ ((1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵))))
116, 9, 10syl2an 287 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵))))
12 mulcompig 7142 . . . 4 (((2nd𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((2nd𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (2nd𝐴)))
135, 7, 12syl2an 287 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((2nd𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (2nd𝐴)))
1413eqeq2d 2151 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵)) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
153, 11, 143bitrd 213 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  cop 3530   class class class wbr 3929   × cxp 4537  cfv 5123  (class class class)co 5774  1st c1st 6036  2nd c2nd 6037  Ncnpi 7083   ·N cmi 7085   ~Q ceq 7090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-ni 7115  df-mi 7117  df-enq 7158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator