ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp2nd GIF version

Theorem xp2nd 5820
Description: Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
xp2nd (𝐴 ∈ (𝐵 × 𝐶) → (2nd𝐴) ∈ 𝐶)

Proof of Theorem xp2nd
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4389 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)))
2 vex 2577 . . . . . . 7 𝑏 ∈ V
3 vex 2577 . . . . . . 7 𝑐 ∈ V
42, 3op2ndd 5803 . . . . . 6 (𝐴 = ⟨𝑏, 𝑐⟩ → (2nd𝐴) = 𝑐)
54eleq1d 2122 . . . . 5 (𝐴 = ⟨𝑏, 𝑐⟩ → ((2nd𝐴) ∈ 𝐶𝑐𝐶))
65biimpar 285 . . . 4 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ 𝑐𝐶) → (2nd𝐴) ∈ 𝐶)
76adantrl 455 . . 3 ((𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (2nd𝐴) ∈ 𝐶)
87exlimivv 1792 . 2 (∃𝑏𝑐(𝐴 = ⟨𝑏, 𝑐⟩ ∧ (𝑏𝐵𝑐𝐶)) → (2nd𝐴) ∈ 𝐶)
91, 8sylbi 118 1 (𝐴 ∈ (𝐵 × 𝐶) → (2nd𝐴) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wex 1397  wcel 1409  cop 3405   × cxp 4370  cfv 4929  2nd c2nd 5793
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-iota 4894  df-fun 4931  df-fv 4937  df-2nd 5795
This theorem is referenced by:  dfplpq2  6509  dfmpq2  6510  enqbreq2  6512  enqdc1  6517  mulpipq2  6526  preqlu  6627  elnp1st2nd  6631  cauappcvgprlemladd  6813  elreal2  6964  cnref1o  8679  frecuzrdgrrn  9357  frec2uzrdg  9358  frecuzrdgfn  9361  frecuzrdgcl  9362  frecuzrdgsuc  9364
  Copyright terms: Public domain W3C validator