ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelrel GIF version

Theorem eqrelrel 4461
Description: Extensionality principle for ordered triples, analogous to eqrel 4449. Use relrelss 4868 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
eqrelrel ((𝐴𝐵) ⊆ ((V × V) × V) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem eqrelrel
StepHypRef Expression
1 unss 3147 . 2 ((𝐴 ⊆ ((V × V) × V) ∧ 𝐵 ⊆ ((V × V) × V)) ↔ (𝐴𝐵) ⊆ ((V × V) × V))
2 ssrelrel 4460 . . . 4 (𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
3 ssrelrel 4460 . . . 4 (𝐵 ⊆ ((V × V) × V) → (𝐵𝐴 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
42, 3bi2anan9 571 . . 3 ((𝐴 ⊆ ((V × V) × V) ∧ 𝐵 ⊆ ((V × V) × V)) → ((𝐴𝐵𝐵𝐴) ↔ (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴))))
5 eqss 3015 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
6 2albiim 1418 . . . . 5 (∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ↔ (∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
76albii 1400 . . . 4 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ↔ ∀𝑥(∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
8 19.26 1411 . . . 4 (∀𝑥(∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)) ↔ (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
97, 8bitri 182 . . 3 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ↔ (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
104, 5, 93bitr4g 221 . 2 ((𝐴 ⊆ ((V × V) × V) ∧ 𝐵 ⊆ ((V × V) × V)) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
111, 10sylbir 133 1 ((𝐴𝐵) ⊆ ((V × V) × V) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1283   = wceq 1285  wcel 1434  Vcvv 2602  cun 2972  wss 2974  cop 3403   × cxp 4363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-opab 3842  df-xp 4371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator