ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjum GIF version

Theorem fodjum 7018
Description: Lemma for fodjuomni 7021 and fodjumkv 7034. A condition which shows that 𝐴 is inhabited. (Contributed by Jim Kingdon, 27-Jul-2022.) (Revised by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjuf.fo (𝜑𝐹:𝑂onto→(𝐴𝐵))
fodjuf.p 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
fodjum.z (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)
Assertion
Ref Expression
fodjum (𝜑 → ∃𝑥 𝑥𝐴)
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑂,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑤,𝐴,𝑥,𝑧   𝑦,𝐴,𝑤   𝑦,𝐹   𝜑,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦,𝑤)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑤)   𝑂(𝑥,𝑤)

Proof of Theorem fodjum
StepHypRef Expression
1 fodjum.z . 2 (𝜑 → ∃𝑤𝑂 (𝑃𝑤) = ∅)
2 1n0 6329 . . . . . . . . 9 1o ≠ ∅
32nesymi 2354 . . . . . . . 8 ¬ ∅ = 1o
43intnan 914 . . . . . . 7 ¬ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o)
54a1i 9 . . . . . 6 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ¬ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))
6 simprr 521 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (𝑃𝑤) = ∅)
7 fodjuf.p . . . . . . . . 9 𝑃 = (𝑦𝑂 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
8 fveqeq2 5430 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝐹𝑦) = (inl‘𝑧) ↔ (𝐹𝑤) = (inl‘𝑧)))
98rexbidv 2438 . . . . . . . . . 10 (𝑦 = 𝑤 → (∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧) ↔ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧)))
109ifbid 3493 . . . . . . . . 9 (𝑦 = 𝑤 → if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o) = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
11 simprl 520 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → 𝑤𝑂)
12 peano1 4508 . . . . . . . . . . 11 ∅ ∈ ω
1312a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∅ ∈ ω)
14 1onn 6416 . . . . . . . . . . 11 1o ∈ ω
1514a1i 9 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → 1o ∈ ω)
16 fodjuf.fo . . . . . . . . . . . 12 (𝜑𝐹:𝑂onto→(𝐴𝐵))
1716fodjuomnilemdc 7016 . . . . . . . . . . 11 ((𝜑𝑤𝑂) → DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
1817adantrr 470 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
1913, 15, 18ifcldcd 3507 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ∈ ω)
207, 10, 11, 19fvmptd3 5514 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (𝑃𝑤) = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
216, 20eqtr3d 2174 . . . . . . 7 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o))
22 eqifdc 3506 . . . . . . . 8 (DECID𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) → (∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ↔ ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))))
2318, 22syl 14 . . . . . . 7 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (∅ = if(∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧), ∅, 1o) ↔ ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o))))
2421, 23mpbid 146 . . . . . 6 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ((∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅) ∨ (¬ ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = 1o)))
255, 24ecased 1327 . . . . 5 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → (∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) ∧ ∅ = ∅))
2625simpld 111 . . . 4 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧))
27 rexm 3462 . . . 4 (∃𝑧𝐴 (𝐹𝑤) = (inl‘𝑧) → ∃𝑧 𝑧𝐴)
2826, 27syl 14 . . 3 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑧 𝑧𝐴)
29 eleq1w 2200 . . . 4 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
3029cbvexv 1890 . . 3 (∃𝑧 𝑧𝐴 ↔ ∃𝑥 𝑥𝐴)
3128, 30sylib 121 . 2 ((𝜑 ∧ (𝑤𝑂 ∧ (𝑃𝑤) = ∅)) → ∃𝑥 𝑥𝐴)
321, 31rexlimddv 2554 1 (𝜑 → ∃𝑥 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wex 1468  wcel 1480  wrex 2417  c0 3363  ifcif 3474  cmpt 3989  ωcom 4504  ontowfo 5121  cfv 5123  1oc1o 6306  cdju 6922  inlcinl 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by:  fodjuomnilemres  7020  fodjumkvlemres  7033
  Copyright terms: Public domain W3C validator