ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkvlemres GIF version

Theorem fodjumkvlemres 7033
Description: Lemma for fodjumkv 7034. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o (𝜑𝑀 ∈ Markov)
fodjumkv.fo (𝜑𝐹:𝑀onto→(𝐴𝐵))
fodjumkv.p 𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
Assertion
Ref Expression
fodjumkvlemres (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑥,𝐴,𝑧   𝑦,𝐴   𝑦,𝐹   𝑦,𝑃,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝑃(𝑥)   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem fodjumkvlemres
Dummy variables 𝑣 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.fo . . . . . 6 (𝜑𝐹:𝑀onto→(𝐴𝐵))
21adantr 274 . . . . 5 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → 𝐹:𝑀onto→(𝐴𝐵))
3 fodjumkv.p . . . . 5 𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
4 simpr 109 . . . . 5 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → ∀𝑤𝑀 (𝑃𝑤) = 1o)
52, 3, 4fodju0 7019 . . . 4 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → 𝐴 = ∅)
65ex 114 . . 3 (𝜑 → (∀𝑤𝑀 (𝑃𝑤) = 1o𝐴 = ∅))
76necon3ad 2350 . 2 (𝜑 → (𝐴 ≠ ∅ → ¬ ∀𝑤𝑀 (𝑃𝑤) = 1o))
8 fveq1 5420 . . . . . . 7 (𝑓 = 𝑃 → (𝑓𝑤) = (𝑃𝑤))
98eqeq1d 2148 . . . . . 6 (𝑓 = 𝑃 → ((𝑓𝑤) = 1o ↔ (𝑃𝑤) = 1o))
109ralbidv 2437 . . . . 5 (𝑓 = 𝑃 → (∀𝑤𝑀 (𝑓𝑤) = 1o ↔ ∀𝑤𝑀 (𝑃𝑤) = 1o))
1110notbid 656 . . . 4 (𝑓 = 𝑃 → (¬ ∀𝑤𝑀 (𝑓𝑤) = 1o ↔ ¬ ∀𝑤𝑀 (𝑃𝑤) = 1o))
128eqeq1d 2148 . . . . 5 (𝑓 = 𝑃 → ((𝑓𝑤) = ∅ ↔ (𝑃𝑤) = ∅))
1312rexbidv 2438 . . . 4 (𝑓 = 𝑃 → (∃𝑤𝑀 (𝑓𝑤) = ∅ ↔ ∃𝑤𝑀 (𝑃𝑤) = ∅))
1411, 13imbi12d 233 . . 3 (𝑓 = 𝑃 → ((¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅) ↔ (¬ ∀𝑤𝑀 (𝑃𝑤) = 1o → ∃𝑤𝑀 (𝑃𝑤) = ∅)))
15 fodjumkv.o . . . 4 (𝜑𝑀 ∈ Markov)
16 ismkvmap 7028 . . . . 5 (𝑀 ∈ Markov → (𝑀 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅)))
1716ibi 175 . . . 4 (𝑀 ∈ Markov → ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅))
1815, 17syl 14 . . 3 (𝜑 → ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅))
191, 3, 15fodjuf 7017 . . 3 (𝜑𝑃 ∈ (2o𝑚 𝑀))
2014, 18, 19rspcdva 2794 . 2 (𝜑 → (¬ ∀𝑤𝑀 (𝑃𝑤) = 1o → ∃𝑤𝑀 (𝑃𝑤) = ∅))
211adantr 274 . . . 4 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → 𝐹:𝑀onto→(𝐴𝐵))
22 simpr 109 . . . . 5 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑤𝑀 (𝑃𝑤) = ∅)
23 fveqeq2 5430 . . . . . 6 (𝑤 = 𝑣 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑣) = ∅))
2423cbvrexv 2655 . . . . 5 (∃𝑤𝑀 (𝑃𝑤) = ∅ ↔ ∃𝑣𝑀 (𝑃𝑣) = ∅)
2522, 24sylib 121 . . . 4 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑣𝑀 (𝑃𝑣) = ∅)
2621, 3, 25fodjum 7018 . . 3 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑥 𝑥𝐴)
2726ex 114 . 2 (𝜑 → (∃𝑤𝑀 (𝑃𝑤) = ∅ → ∃𝑥 𝑥𝐴))
287, 20, 273syld 57 1 (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1331  wex 1468  wcel 1480  wne 2308  wral 2416  wrex 2417  c0 3363  ifcif 3474  cmpt 3989  ontowfo 5121  cfv 5123  (class class class)co 5774  1oc1o 6306  2oc2o 6307  𝑚 cmap 6542  cdju 6922  inlcinl 6930  Markovcmarkov 7025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-1o 6313  df-2o 6314  df-map 6544  df-dju 6923  df-inl 6932  df-inr 6933  df-markov 7026
This theorem is referenced by:  fodjumkv  7034
  Copyright terms: Public domain W3C validator