ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr2 GIF version

Theorem fvpr2 5418
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
fvpr2.1 𝐵 ∈ V
fvpr2.2 𝐷 ∈ V
Assertion
Ref Expression
fvpr2 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)

Proof of Theorem fvpr2
StepHypRef Expression
1 prcom 3486 . . 3 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}
21fveq1i 5230 . 2 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵)
3 necom 2333 . . 3 (𝐴𝐵𝐵𝐴)
4 fvpr2.1 . . . 4 𝐵 ∈ V
5 fvpr2.2 . . . 4 𝐷 ∈ V
64, 5fvpr1 5417 . . 3 (𝐵𝐴 → ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵) = 𝐷)
73, 6sylbi 119 . 2 (𝐴𝐵 → ({⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}‘𝐵) = 𝐷)
82, 7syl5eq 2127 1 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  wne 2249  Vcvv 2610  {cpr 3417  cop 3419  cfv 4952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-res 4403  df-iota 4917  df-fun 4954  df-fv 4960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator