Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdf GIF version

Theorem genpdf 6830
 Description: Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
Hypothesis
Ref Expression
genpdf.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩)
Assertion
Ref Expression
genpdf 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
Distinct variable group:   𝑟,𝑞,𝑠,𝑣,𝑤
Allowed substitution hints:   𝐹(𝑤,𝑣,𝑠,𝑟,𝑞)   𝐺(𝑤,𝑣,𝑠,𝑟,𝑞)

Proof of Theorem genpdf
StepHypRef Expression
1 genpdf.1 . 2 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩)
2 prop 6797 . . . . . . 7 (𝑤P → ⟨(1st𝑤), (2nd𝑤)⟩ ∈ P)
3 elprnql 6803 . . . . . . 7 ((⟨(1st𝑤), (2nd𝑤)⟩ ∈ P𝑟 ∈ (1st𝑤)) → 𝑟Q)
42, 3sylan 277 . . . . . 6 ((𝑤P𝑟 ∈ (1st𝑤)) → 𝑟Q)
54adantlr 461 . . . . 5 (((𝑤P𝑣P) ∧ 𝑟 ∈ (1st𝑤)) → 𝑟Q)
6 prop 6797 . . . . . . 7 (𝑣P → ⟨(1st𝑣), (2nd𝑣)⟩ ∈ P)
7 elprnql 6803 . . . . . . 7 ((⟨(1st𝑣), (2nd𝑣)⟩ ∈ P𝑠 ∈ (1st𝑣)) → 𝑠Q)
86, 7sylan 277 . . . . . 6 ((𝑣P𝑠 ∈ (1st𝑣)) → 𝑠Q)
98adantll 460 . . . . 5 (((𝑤P𝑣P) ∧ 𝑠 ∈ (1st𝑣)) → 𝑠Q)
105, 9genpdflem 6829 . . . 4 ((𝑤P𝑣P) → {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)})
11 elprnqu 6804 . . . . . . 7 ((⟨(1st𝑤), (2nd𝑤)⟩ ∈ P𝑟 ∈ (2nd𝑤)) → 𝑟Q)
122, 11sylan 277 . . . . . 6 ((𝑤P𝑟 ∈ (2nd𝑤)) → 𝑟Q)
1312adantlr 461 . . . . 5 (((𝑤P𝑣P) ∧ 𝑟 ∈ (2nd𝑤)) → 𝑟Q)
14 elprnqu 6804 . . . . . . 7 ((⟨(1st𝑣), (2nd𝑣)⟩ ∈ P𝑠 ∈ (2nd𝑣)) → 𝑠Q)
156, 14sylan 277 . . . . . 6 ((𝑣P𝑠 ∈ (2nd𝑣)) → 𝑠Q)
1615adantll 460 . . . . 5 (((𝑤P𝑣P) ∧ 𝑠 ∈ (2nd𝑣)) → 𝑠Q)
1713, 16genpdflem 6829 . . . 4 ((𝑤P𝑣P) → {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)})
1810, 17opeq12d 3598 . . 3 ((𝑤P𝑣P) → ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩ = ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
1918mpt2eq3ia 5622 . 2 (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩) = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
201, 19eqtri 2103 1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
 Colors of variables: wff set class Syntax hints:   ∧ wa 102   ∧ w3a 920   = wceq 1285   ∈ wcel 1434  ∃wrex 2354  {crab 2357  ⟨cop 3419  ‘cfv 4952  (class class class)co 5564   ↦ cmpt2 5566  1st c1st 5817  2nd c2nd 5818  Qcnq 6602  Pcnp 6613 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-iinf 4357 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-qs 6200  df-ni 6626  df-nqqs 6670  df-inp 6788 This theorem is referenced by:  genipv  6831
 Copyright terms: Public domain W3C validator