ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genppreclu GIF version

Theorem genppreclu 6670
Description: Pre-closure law for general operation on upper cuts. (Contributed by Jim Kingdon, 7-Nov-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genppreclu ((𝐴P𝐵P) → ((𝐶 ∈ (2nd𝐴) ∧ 𝐷 ∈ (2nd𝐵)) → (𝐶𝐺𝐷) ∈ (2nd ‘(𝐴𝐹𝐵))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genppreclu
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2056 . . 3 (𝐶𝐺𝐷) = (𝐶𝐺𝐷)
2 rspceov 5574 . . 3 ((𝐶 ∈ (2nd𝐴) ∧ 𝐷 ∈ (2nd𝐵) ∧ (𝐶𝐺𝐷) = (𝐶𝐺𝐷)) → ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)(𝐶𝐺𝐷) = (𝑔𝐺))
31, 2mp3an3 1232 . 2 ((𝐶 ∈ (2nd𝐴) ∧ 𝐷 ∈ (2nd𝐵)) → ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)(𝐶𝐺𝐷) = (𝑔𝐺))
4 genpelvl.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
5 genpelvl.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelvu 6668 . 2 ((𝐴P𝐵P) → ((𝐶𝐺𝐷) ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)(𝐶𝐺𝐷) = (𝑔𝐺)))
73, 6syl5ibr 149 1 ((𝐴P𝐵P) → ((𝐶 ∈ (2nd𝐴) ∧ 𝐷 ∈ (2nd𝐵)) → (𝐶𝐺𝐷) ∈ (2nd ‘(𝐴𝐹𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896   = wceq 1259  wcel 1409  wrex 2324  {crab 2327  cop 3405  cfv 4929  (class class class)co 5539  cmpt2 5541  1st c1st 5792  2nd c2nd 5793  Qcnq 6435  Pcnp 6446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-qs 6142  df-ni 6459  df-nqqs 6503  df-inp 6621
This theorem is referenced by:  genpmu  6673  genprndu  6677  addnqpru  6685  mulnqpru  6724  distrlem1pru  6738  distrlem4pru  6740  ltexprlemru  6767  addcanprleml  6769  addcanprlemu  6770
  Copyright terms: Public domain W3C validator