ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftl GIF version

Theorem iccshftl 8965
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftl.1 (𝐴𝑅) = 𝐶
iccshftl.2 (𝐵𝑅) = 𝐷
Assertion
Ref Expression
iccshftl (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋𝑅) ∈ (𝐶[,]𝐷)))

Proof of Theorem iccshftl
StepHypRef Expression
1 simpl 106 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝑋 ∈ ℝ)
2 resubcl 7338 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋𝑅) ∈ ℝ)
31, 22thd 168 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 ∈ ℝ ↔ (𝑋𝑅) ∈ ℝ))
43adantl 266 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ ℝ ↔ (𝑋𝑅) ∈ ℝ))
5 lesub1 7525 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴𝑅) ≤ (𝑋𝑅)))
653expb 1116 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴𝑅) ≤ (𝑋𝑅)))
76adantlr 454 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋 ↔ (𝐴𝑅) ≤ (𝑋𝑅)))
8 iccshftl.1 . . . . 5 (𝐴𝑅) = 𝐶
98breq1i 3799 . . . 4 ((𝐴𝑅) ≤ (𝑋𝑅) ↔ 𝐶 ≤ (𝑋𝑅))
107, 9syl6bb 189 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝐴𝑋𝐶 ≤ (𝑋𝑅)))
11 lesub1 7525 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
12113expb 1116 . . . . . 6 ((𝑋 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
1312an12s 507 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
1413adantll 453 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ (𝐵𝑅)))
15 iccshftl.2 . . . . 5 (𝐵𝑅) = 𝐷
1615breq2i 3800 . . . 4 ((𝑋𝑅) ≤ (𝐵𝑅) ↔ (𝑋𝑅) ≤ 𝐷)
1714, 16syl6bb 189 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋𝐵 ↔ (𝑋𝑅) ≤ 𝐷))
184, 10, 173anbi123d 1218 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
19 elicc2 8908 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
2019adantr 265 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
21 resubcl 7338 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐴𝑅) ∈ ℝ)
228, 21syl5eqelr 2141 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐶 ∈ ℝ)
23 resubcl 7338 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝐵𝑅) ∈ ℝ)
2415, 23syl5eqelr 2141 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
25 elicc2 8908 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2622, 24, 25syl2an 277 . . . 4 (((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2726anandirs 535 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2827adantrl 455 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → ((𝑋𝑅) ∈ (𝐶[,]𝐷) ↔ ((𝑋𝑅) ∈ ℝ ∧ 𝐶 ≤ (𝑋𝑅) ∧ (𝑋𝑅) ≤ 𝐷)))
2918, 20, 283bitr4d 213 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋𝑅) ∈ (𝐶[,]𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 896   = wceq 1259  wcel 1409   class class class wbr 3792  (class class class)co 5540  cr 6946  cle 7120  cmin 7245  [,]cicc 8861
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7058
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-po 4061  df-iso 4062  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-icc 8865
This theorem is referenced by:  iccshftli  8966  iccf1o  8973
  Copyright terms: Public domain W3C validator