ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icodisj GIF version

Theorem icodisj 9125
Description: End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
icodisj ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)

Proof of Theorem icodisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3165 . . . 4 (𝑥 ∈ ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)))
2 elico1 9057 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵)))
323adant3 959 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵)))
43biimpa 290 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵))
54simp3d 953 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 < 𝐵)
65adantrr 463 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))) → 𝑥 < 𝐵)
7 elico1 9057 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
873adant1 957 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
98biimpa 290 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶))
109simp2d 952 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝐵𝑥)
11 simpl2 943 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝐵 ∈ ℝ*)
129simp1d 951 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ℝ*)
13 xrlenlt 7279 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
1411, 12, 13syl2anc 403 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
1510, 14mpbid 145 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → ¬ 𝑥 < 𝐵)
1615adantrl 462 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))) → ¬ 𝑥 < 𝐵)
176, 16pm2.65da 620 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)))
1817pm2.21d 582 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ∅))
191, 18syl5bi 150 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) → 𝑥 ∈ ∅))
2019ssrdv 3014 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ⊆ ∅)
21 ss0 3300 . 2 (((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ⊆ ∅ → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)
2220, 21syl 14 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  cin 2981  wss 2982  c0 3267   class class class wbr 3805  (class class class)co 5563  *cxr 7249   < clt 7250  cle 7251  [,)cico 9024
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7164  ax-resscn 7165
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2611  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7252  df-mnf 7253  df-xr 7254  df-le 7256  df-ico 9028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator