ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icodisj GIF version

Theorem icodisj 9775
Description: End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
icodisj ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)

Proof of Theorem icodisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3259 . . . 4 (𝑥 ∈ ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)))
2 elico1 9706 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵)))
323adant3 1001 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵)))
43biimpa 294 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵))
54simp3d 995 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 < 𝐵)
65adantrr 470 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))) → 𝑥 < 𝐵)
7 elico1 9706 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
873adant1 999 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶)))
98biimpa 294 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝑥 ∈ ℝ*𝐵𝑥𝑥 < 𝐶))
109simp2d 994 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝐵𝑥)
11 simpl2 985 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝐵 ∈ ℝ*)
129simp1d 993 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ℝ*)
13 xrlenlt 7829 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
1411, 12, 13syl2anc 408 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
1510, 14mpbid 146 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → ¬ 𝑥 < 𝐵)
1615adantrl 469 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))) → ¬ 𝑥 < 𝐵)
176, 16pm2.65da 650 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)))
1817pm2.21d 608 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ∅))
191, 18syl5bi 151 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ∈ ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) → 𝑥 ∈ ∅))
2019ssrdv 3103 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ⊆ ∅)
21 ss0 3403 . 2 (((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ⊆ ∅ → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)
2220, 21syl 14 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  cin 3070  wss 3071  c0 3363   class class class wbr 3929  (class class class)co 5774  *cxr 7799   < clt 7800  cle 7801  [,)cico 9673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-le 7806  df-ico 9677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator