![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrlenlt | GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrlenlt | ⊢ ((A ∈ ℝ* ∧ B ∈ ℝ*) → (A ≤ B ↔ ¬ B < A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3756 | . . 3 ⊢ (A ≤ B ↔ 〈A, B〉 ∈ ≤ ) | |
2 | opelxpi 4319 | . . . 4 ⊢ ((A ∈ ℝ* ∧ B ∈ ℝ*) → 〈A, B〉 ∈ (ℝ* × ℝ*)) | |
3 | df-le 6863 | . . . . . . 7 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
4 | 3 | eleq2i 2101 | . . . . . 6 ⊢ (〈A, B〉 ∈ ≤ ↔ 〈A, B〉 ∈ ((ℝ* × ℝ*) ∖ ◡ < )) |
5 | eldif 2921 | . . . . . 6 ⊢ (〈A, B〉 ∈ ((ℝ* × ℝ*) ∖ ◡ < ) ↔ (〈A, B〉 ∈ (ℝ* × ℝ*) ∧ ¬ 〈A, B〉 ∈ ◡ < )) | |
6 | 4, 5 | bitri 173 | . . . . 5 ⊢ (〈A, B〉 ∈ ≤ ↔ (〈A, B〉 ∈ (ℝ* × ℝ*) ∧ ¬ 〈A, B〉 ∈ ◡ < )) |
7 | 6 | baib 827 | . . . 4 ⊢ (〈A, B〉 ∈ (ℝ* × ℝ*) → (〈A, B〉 ∈ ≤ ↔ ¬ 〈A, B〉 ∈ ◡ < )) |
8 | 2, 7 | syl 14 | . . 3 ⊢ ((A ∈ ℝ* ∧ B ∈ ℝ*) → (〈A, B〉 ∈ ≤ ↔ ¬ 〈A, B〉 ∈ ◡ < )) |
9 | 1, 8 | syl5bb 181 | . 2 ⊢ ((A ∈ ℝ* ∧ B ∈ ℝ*) → (A ≤ B ↔ ¬ 〈A, B〉 ∈ ◡ < )) |
10 | opelcnvg 4458 | . . . 4 ⊢ ((A ∈ ℝ* ∧ B ∈ ℝ*) → (〈A, B〉 ∈ ◡ < ↔ 〈B, A〉 ∈ < )) | |
11 | df-br 3756 | . . . 4 ⊢ (B < A ↔ 〈B, A〉 ∈ < ) | |
12 | 10, 11 | syl6rbbr 188 | . . 3 ⊢ ((A ∈ ℝ* ∧ B ∈ ℝ*) → (B < A ↔ 〈A, B〉 ∈ ◡ < )) |
13 | 12 | notbid 591 | . 2 ⊢ ((A ∈ ℝ* ∧ B ∈ ℝ*) → (¬ B < A ↔ ¬ 〈A, B〉 ∈ ◡ < )) |
14 | 9, 13 | bitr4d 180 | 1 ⊢ ((A ∈ ℝ* ∧ B ∈ ℝ*) → (A ≤ B ↔ ¬ B < A)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 ∈ wcel 1390 ∖ cdif 2908 〈cop 3370 class class class wbr 3755 × cxp 4286 ◡ccnv 4287 ℝ*cxr 6856 < clt 6857 ≤ cle 6858 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-br 3756 df-opab 3810 df-xp 4294 df-cnv 4296 df-le 6863 |
This theorem is referenced by: lenlt 6891 pnfge 8480 mnfle 8483 xrltle 8489 xrleid 8490 xrletri3 8491 xrlelttr 8492 xrltletr 8493 xrletr 8494 xleneg 8520 iccid 8564 icc0r 8565 icodisj 8630 ioodisj 8631 |
Copyright terms: Public domain | W3C validator |