Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ideq GIF version

Theorem ideq 4516
 Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
Hypothesis
Ref Expression
ideq.1 𝐵 ∈ V
Assertion
Ref Expression
ideq (𝐴 I 𝐵𝐴 = 𝐵)

Proof of Theorem ideq
StepHypRef Expression
1 ideq.1 . 2 𝐵 ∈ V
2 ideqg 4515 . 2 (𝐵 ∈ V → (𝐴 I 𝐵𝐴 = 𝐵))
31, 2ax-mp 7 1 (𝐴 I 𝐵𝐴 = 𝐵)
 Colors of variables: wff set class Syntax hints:   ↔ wb 102   = wceq 1259   ∈ wcel 1409  Vcvv 2574   class class class wbr 3792   I cid 4053 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380 This theorem is referenced by:  dmi  4578  resieq  4650  resiexg  4681  iss  4682  imai  4709  issref  4735  intasym  4737  asymref  4738  intirr  4739  poirr2  4745  cnvi  4756  coi1  4864  idssen  6288
 Copyright terms: Public domain W3C validator